Dissipation in active matter

1. Dissipation and structure

2. Dissipation and phase transitions

Thermodynamic observables and emerging order

Equilibrium thermodynamics

Energy

Controlling observables with conjugate parameter

Equilibrium

Energy (U)

Temperature (T)

Configuration space $P(\{\mathbf{r}_i, \theta_i\} \mid U) \sim e^{-U/T}$ Nonequilibrium

Dissipation (\mathcal{J})

Unknown (s)

Trajectory space $\mathcal{P}(\{\mathbf{r}_i, \theta_i\}_0^{\tau})$

Trajectories conditioned by dissipation $\mathcal{P}_{con}(\{\mathbf{r}_{i}, \theta_{i}\}_{0}^{\tau} \mid \mathcal{J})$

What is the dynamics at a given dissipation?

Large deviation theory

Distance between conditioned and original dynamics

$$\mathcal{D}[\mathcal{P}_{\text{con}}, \mathcal{P}] = \lim_{\tau \to \infty} \frac{1}{\tau} \left\langle \log \frac{\mathcal{P}_{\text{con}}(\{\mathbf{r}_i, \theta_i\}_0^{\top} \mid \mathcal{J})}{\mathcal{P}(\{\mathbf{r}_i, \theta_i\}_0^{\top})} \right\rangle$$
$$\mathcal{D}[\mathcal{P}_{\text{con}}, \mathcal{P}] \geq \mathcal{I}(\mathcal{J})$$

Probability of atypical ${\mathcal J}$

$$p(\mathcal{J}) \asymp \exp\left(-\tau \mathcal{I}(\mathcal{J})\right)$$

Optimal conditioning given by biased ensemble

$$\mathcal{P}_{\mathrm{opt}} \, \sim \, \mathcal{P} \; \mathrm{e}^{- s \, N \tau \, \mathcal{J}}$$

Jack, EPJB 93, 74 (2020)

Cagnetta *et al*, PRL **119**, 158002 (2017) Whitelam *et al*, JCP **148**, 154902 (2018) Nemoto *et al*, PRE **99**, 022605 (2019) Tociu *et al*, PRX **9**, 041026 (2019) Gradenigo et al, J Stat Mech, 053206 (2019) Mallmin et al, J Phys A 52, 425002 (2019) EF et al, NJP 22, 013052 (2020) Cagnetta et al, PRE 101, 022130 (2020)

Dynamical transitions $\begin{cases} s > 0 & \text{small } \mathcal{J} & \text{Phase separation (PS)} \\ s < 0 & \text{large } \mathcal{J} & \text{Collective motion (CM)} \end{cases}$

Nemoto, EF, Cates, Jack, Tailleur, PRE 99, 022605 (2019)

Dynamics equivalent to biased ensemble

Conditioning trajectories yields effective interactions

$$\begin{split} \dot{\mathbf{r}}_i &= -\mu \nabla_i U + \mathbf{v} \, \mathbf{e}_i + \sqrt{2 D_{\mathrm{t}}} \, \boldsymbol{\xi}_i \\ \dot{\theta}_i &= -\frac{\partial}{\partial \theta_i} V\big(\{\mathbf{r}_i, \theta_i\}\big) + \sqrt{2 D_{\mathrm{r}}} \, \eta_i \end{split}$$

Comparing effective dynamics and biased ensemble

$$\mathcal{D}ig[\mathcal{P}_{ ext{eff}}, \mathcal{P} ig] \, \geq \, \mathcal{D}ig[\mathcal{P}_{ ext{opt}}, \mathcal{P} ig]$$

Which interactions reproduce biased ensemble?

Chetrite, Touchette, PRL **111**, 120601 (2013) Jack, Sollich, EPJST **224**, 2351 (2015)

Collective motion at large dissipation

$$\dot{\mathbf{r}}_i = -\mu \nabla_i U + \mathbf{v} \, \mathbf{e}_i + \sqrt{2D_t} \, \boldsymbol{\xi}_i$$
$$\dot{\theta}_i = \frac{g}{N} \sum_{j=1}^N \sin(\theta_i - \theta_j) + \sqrt{2D_r} \, \eta_i$$

 Effective alignment captures biased ensemble dynamics

Collective motion at large dissipation

Transition driven by entropy-energy competition

Critical parameter $~~g_{
m c} \sim D_{
m r} ~\longrightarrow~ s_{
m c} \sim -D_{
m r}$

Collective motion at large dissipation

Transition driven by entropy-energy competition

Critical parameter $g_{
m c} \sim D_{
m r} \longrightarrow s_{
m c} \sim -D_{
m r}$

Entropic effect

Minimizing distance from original dynamics

Avoiding order

Extensive cost

Every particle aligns

Energetic effect

Achieving large dissipation

Promoting order

Extensive gain $\mathcal{P}_{\mathrm{opt}} \sim \mathcal{P} \ \mathrm{e}^{-s \, N \tau \, \mathcal{J}}$

Stabilizing clusters only requires forces at boundaries

Phase separation at small dissipation

Sub-extensive distance from original dynamics

$$\mathcal{D}ig[\mathcal{P}_{ ext{eff}}, \mathcal{P} ig] \, \geq \, \mathcal{D}ig[\mathcal{P}_{ ext{opt}}, \mathcal{P} ig]$$

Phase separation at small dissipation

Critical parameter $s_c \xrightarrow[N\gg1]{} 0$

Entropic effect

Minimizing distance from original dynamics

Avoiding order

Sub-extensive cost

Leaders compress clusters

Energetic effect

Achieving small dissipation

Promoting order

Extensive gain $\mathcal{P}_{\mathrm{opt}} \sim \mathcal{P} e^{-sN\tau \mathcal{J}}$

Summary and outlook

Phase transitions induced by dissipation

How to polarize isotropic particles

Give instructions of avoiding collisions

Bird flocks

Bialek *et al*, PNAS **109**, 4786 (2012)

Fish schools

Marchetti *et al*, RMP **85**, 1143 (2013)

Human crowds

Bain, Bartolo, Science **363**, 6422 (2019)

Summary and outlook

Classification of active systems

Cates, Tailleur, Annu Rev CMP **6**, 219 (2015) Nemoto *et al*, PRE **99**, 022605 (2019) EF *et al*, NJP **22**, 013052 (2020)

École Normale Supérieure University of Chicago University of Cambridge Université Paris Diderot T. Nemoto L. Tociu, G. Rassolov Y.-E. Keita, R. L. Jack, M. E. Cates J. Tailleur, F. van Wijland

