
Benjamin C. Haller Messer Lab, Cornell University

Modeling Population and
Quantitative Genetics in SLiM

KITP, 2022

forward genetic simulation software

Jared Galloway

SLiM Contributors

Ben Haller Philipp Messer Peter Ralph

Jerome Kelleher Ben Jeffery

… and many more!

Talk outline

• What is SLiM? Why use SLiM?

• An introduction to Eidos and SLiM

• A survey of example models

• Population-genetic models in SLiM

• Quantitative-genetic models in SLiM

• Closing remarks

Talk outline

• What is SLiM? Why use SLiM?

• An introduction to Eidos and SLiM

• A survey of example models

• Population-genetic models in SLiM

• Quantitative-genetic models in SLiM

• Closing remarks

Forward genetic simulation

• “Forward”:
– runs forward from an initial state

(vs. coalescent methods)

• “Genetic”:
– explicit loci on a chromosome

(vs. phenotypic simulations)

• “Simulation”:
– individual-based modeling

(vs. analytical modeling)

Why do simulations?

• Fitting empirical population genomic data
– analyzing past evolutionary forces
– predicting future evolution

• Analyzing theoretical evolutionary models
– predicting the consequences of a new theory
– comparing multiple theories

• Developing statistical methods
– testing a method’s accuracy, bias, or power
– generating datasets for machine learning

Why do forward simulations?

• Evolution is complex:
– complex demography and population structure
– non-random mating and complex mating systems
– spatial structure and non-random dispersal
– spatial and temporal variation in selection
– frequency-dependent selection, kin selection, etc.
– realistic genetic/chromosomal structure
– epistasis, polygenic traits, pleiotropy

– multiple loci under selection
– variable recombination / mutation rate

Why use SLiM?

Why use SLiM?

• Flexible and customizable with Eidos

– scriptability means there are (almost) no limits
– similar to R in its syntax and function names
– ends statements with semicolons; zero-based!

Why use SLiM?

• Very fast: SLiM is highly optimized

chromosome length

tim
e

(s
ec

on
ds

)

105 106 107 108 109 1010

10
−1
10
0
10

10
2
10
3
10
4
10
5
10
6

SLiM (extrapolated)
SLiM treeSeq
SLiM treeSeq (pre-overlay)
msprime coalescent (n = 2N)
msprime coalescent (n = 2N /100) neutral simulation

mean over 10 replicates
N = 500 diploids
r = 10-8
μ = 10-7

run to the expected time for
coalescence (~3N to ~15N)

Haller et al., Mol. Ecol. Res (2019)

Why use SLiM?

• Interactive and graphical
– easy to visualize / debug / explore

Why use SLiM?

• Open source on GitHub, GPL license

– free, reusable, shareable, debugged, easy!

Talk outline

• What is SLiM? Why use SLiM?

• An introduction to Eidos and SLiM

• A survey of example models

• Population-genetic models in SLiM

• Quantitative-genetic models in SLiM

• Closing remarks

live demo

An introduction to Eidos

Data types

• NULL: no explicit value

• logical: a Boolean true/false value (T/F)

• integer: a 64-bit signed integer (10, -27)

• float: a floating-point number (10.0, -2.7)

• string: a sequence of characters ("foo")

• object: an instance of a class (Individual)

Operators

• Arithmetic: +, -, *, /, %, ^, :

• Logical: &, |, !

• Comparison: <, >, <=, >=, ==, !=

• Assignment: =

• Precedence and function call: ()

• Subset: []

• Property access and method call: .

 6 + 2*7

 T & !F

 2+2 == 4

 x = 8

 (6+2) * 7

 x[5]

 foo.bar

Control flow

• if-else: conditional execution
– if (condition) statement; else statement;

• while: loop on a condition, 0+ times
– while (condition) statement;

• do-while: loop on a condition, 1+ times
– do statement; while (condition);

• for: loop over the values in a vector
– for (i in vector) statement;

Built-in functions

• Math: abs(), ceil(), log(), setUnion(), …

• Statistics: max(), mean(), sd(), cov(), …

• Distributions: rnorm(), rpois(), runif(), …

• Vectors: c(), rep(), seq(), sample(), …

• Values: all(), any(), identical(), sort(), …

• Output: cat(), print(), paste(), str(), …

• Types: isFloat(), asFloat(), …

• Filesystem: readFile(), writeFile(), …

Objects, properties, methods

• Objects represent entities:
– e.g., individuals, mutations, subpopulations

• Objects have properties:
– attributes like age, sex, spatialPosition
– individual.age returns the age of individual
– individual.age = 10; changes its age

• Objects have methods:
– methods perform complex operations
– individual.containsMutations(muts)

An introduction to SLiM

SLiM Eidos classes

• Chromosome hierarchy:

• Chromosome

• MutationType

• GenomicElementType

• GenomicElement

• Other classes:

• InteractionType

• LogFile

• SLiMEidosBlock

• SLiMgui

• Community hierarchy:

• Community

• Species

• Subpopulation

• Individual

• Genome

• Mutation

• Substitution

• Popgen utilities,
nucleotide utilities, etc.

The chromosome hierarchy
Genomic elements, genomic element types, and mutation types

• The chromosome defines the genetic structure
• It is a sequence of elements (GenomicElement)
• Each element has a type (GenomicElementType)
• Each type draws from a DFE (MutationType)

The community hierarchy

• The community contains one or more species
• Each species contains subpopulations
• Each subpopulation contains individuals
• Each individual contains genomes
• Each genome contains mutations

p1
p2

p3

p4

p5
p6

p7

p8

p9

p10 { }{Species
{ }Species

Species

Individuals and genomes

• Individuals (class Individual) are organisms
• Individuals are born, mate, die, …
• Each individual has two genomes (class Genome)
• Each genome has L discrete base positions

0 L−1

Mutations

• Mutations (class Mutation) live in genomes
• Genomes begin empty (the ancestral state)
• Mutations represent a non-ancestral allele (SNP)
• Mutations have properties: selection coefficient

0 L−1

The “SLiM core”

• SLiM is divided into the “core”…
• Optimized C++ to run the tick cycle
• Default behaviors for simple models:

• Fitness, mate choice, gamete generation,
mutation, recombination, mortality, …

• … and everything else, in Eidos script:
• Events (first()/early()/late())
• Callbacks

SLiM callbacks

• fitness(): individual-based fitness effects

• mateChoice(): non-random mating effects in WF models

• reproduction(): scripted reproduction in nonWF models

• modifyChild(): individual customization of offspring

• mutation(): customization of the mutational process

• recombination(): customization of recombination

• survival(): influencing mortality in nonWF models

• interaction(): spatial interactions (competition, mating)

WF versus nonWF

• SLiM supports two different model types:
– WF: Wright–Fisher
– nonWF: non-Wright–Fisher

• Differences:
– tick cycles
– offspring generation
– population regulation
– age structure

– fitness models
– demography
– mate choice
– migration

• Population size is a parameter

• Population regulation is automatic

• Fitness affects mating probability

• Selection is soft (relative fitness)

• Non-overlapping generations

• No age structure

• Migration is due to parameters

WF Models

• Population size is emergent

• Population regulation is scripted

• Fitness affects viability/survival

• Selection is hard (absolute fitness)

• Generations can overlap

• Age structure is emergent

• Migration is scripted

nonWF Models

Fitness

• Fitness is a multiplicative combination of effects
• Fitness effects come from:

• mutations (1 / 1+hs / 1+s)
• fitness() callbacks – per mutation
• individual fitnessScaling values
• subpopulation fitnessScaling values

• This allows:
• QTLs, behavior, spatiotemporal variation…

Talk outline

• What is SLiM? Why use SLiM?

• An introduction to Eidos and SLiM

• A survey of example models

• Population-genetic models in SLiM

• Quantitative-genetic models in SLiM

• Closing remarks

The Gravel model (5.4)

• Simulating human evolutionary history
• Demographic events, exponential growth

1 52080 5800055960 57080

Time (Generations)

Po
p

u
la

ti
o

n
 s

iz
e

0

p1: African

p2: Eurasian Bottleneck

p2: European

p3: East Asian

7310

14474

1861 554

1032

34039

45852

1
5
×

1
0
−

5

2
.5
×

1
0
−

5

0
.7

8
×

1
0
−

5 3
.1

1
×

1
0
−

5

45852 Subpopulation size

Subpopulation split event

Migration rate

Time (generations)

Po
pu

la
tio

n
si

ze

Introgression & sweeps (9.7)

• Introgression of a single introduced mutation
• Ten subpopulations connected by migration

50 100 150 200 250 300
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Generation

Fi
tn

es
s

(r
es

ca
le

d
ab

so
lu

te
)

All
pX

p1
p2

p3

p4

p5
p6

p7

p8

p9

p10

Generation

Fi
tn

es
s

Gene drives (12.3)

• Simulating CRISPR gene drive
• Fixes despite negative fitness effects
• Fixes despite going against migration

p0

p1

p2

p3

p4

p5

p0

p1

p2

p3

p4

p5

p0

p1

p2

p3

p4

p5

➠ ➠

Metapopulations (5.3.4)

• Many subpopulations connected by migration
• The connection pattern can be spatial, or not

p3 p4 p5 p6 p7 p8 p9 p10

p12 p13 p15 p16 p17 p20

p21 p22 p23 p25 p26 p27 p30

p31 p32 p33 p34 p35 p37 p38 p39

p41 p42 p43 p46 p47 p48 p49 p50

p51 p52 p53 p54 p56 p57 p60

p61 p63 p64 p66 p67 p68

p71 p73 p74 p75 p76 p77 p78 p79 p80

p81 p83 p85 p86 p87 p89 p90

p91 p92 p93 p94 p95 p96 p97 p98 p100

Adaptive walks (14.8)

• A QTL-based model with pleiotropy (M-matrix)
• Two phenotypic traits defined by additive QTLs

-10 0 10 20 30

-3
0

-2
0

-1
0

0
10

x

y

Phenotype 1

Ph
en

ot
yp

e
2

Continuous space (15.10)

• Individuals live in a continuous 2-D space
• A landscape map of the world is used
• Population expansion out of Africa

Local adaptation (15.11)

• Individuals live in a continuous 2-D space
• A map defines a heterogeneous environment
• Adaptation to the local environment results

Nucleotide-based models (18.1)

• Track the nucleotide sequence of every genome
• Mutations have an associated nucleotide
• Mutation rates are sequence-dependent
• Realistic gene conversion, including gBGC

GAATGTCGGTTAGAGCAACCTAGCTTCTCAGATCGCAATA
GAATGTCCGTTAGAGCAACCTAGCTTCTCAGATGGCTATA
GAATGTCCGTTAGAGCAACCTAGCTTCTCAGATGGCCATA
GAATGTCGGTTAGAGCATCCTAGCTTCTCAGATCGCAATA
GAATGTCGGTTAGAGCAACCTAGCTTCTCAGATCGCAATA
GAATGTCCGTTAGAGCAACCTAGCTTCTCAGATGGCAATA
GAATGTCGGTTAGAGCATCCTAGCCTCTCAGATGGCAATA
GAATGTCGGTTAGAGCATCCTAGCTTCTCAGATCGCAATA

Multispecies models (19.4 & 19.6)

• Simulate more than one species in a model
• Ecology: competition, predation, parasitism, …
• Coevolutionary and eco-evolutionary dynamics

����

�
�
�
�
	

��
�
��
�
��
��
�
��
�

� ��� ���

�

�����

�����

�����

����

��
�������

0 2000 4000 6000 8000 10000

-2
-1

0
1

2

Tick

Ph
en
ot
yp
e

host
parasitoid

19.4: Host-parasitoid
population size cycling

19.6: Red Queen
coevolutionary dynamics

Tick

Ph
en

ot
yp

e
Po

pu
la

tio
n

si
ze

Tree sequences & ancestry (17.10)

• Tracking the ancestry tree at every position
• Mean tree height is a proxy for diversity at a site
• After a sweep, diversity is lowest near the sweep
• Recapitation constructs neutral burn-in history

0e+00 1e+06

chromosome position

m
ea

n
tre

e
he

ig
ht

 (g
en

er
at

io
ns

)

1
1e

4
1e

5
1e

6

Chromosome position

M
ea

n
tr

ee
 h

ei
gh

t

Talk outline

• What is SLiM? Why use SLiM?

• An introduction to Eidos and SLiM

• A survey of example models

• Population-genetic models in SLiM

• Quantitative-genetic models in SLiM

• Closing remarks

Population-genetic models

• Demography:
• Discrete subpopulations with migration
• Continuous space with dispersal

• Ploidy:
• Diploid, haploid, haplodiploid*, …*

• Sex and mating:
• Hermaphrodites, separate sexes, X/Y, …*
• Biparental sexual mating
• Cloning, selfing, horizontal gene transfer*, …*

Population-genetic models

• Any chromosome length
• Any number of chromosomes*
• Any number of loci and alleles
• Any recombination-rate map
• Any mutation-rate map
• Any distributions of fitness effects
• Any individual effects* on fitness, mortality,

mate choice, recombination, migration,
dispersal, mutation, …

Population-genetic models

• Selective sweeps
• partial or full
• conditional on fixation or establishment
• soft and hard sweeps of various kinds

• Background selection
• Local adaptation
• Introgression
• Reproductive isolation (partial or full)
• Speciation

live demo

Talk outline

• What is SLiM? Why use SLiM?

• An introduction to Eidos and SLiM

• A survey of example models

• Population-genetic models in SLiM

• Quantitative-genetic models in SLiM

• Closing remarks

Quantitative Traits

• Mendelian traits:
– governed by a single locus
– produce discrete outcomes
– can be modeled with selection coefficients

• Quantitative traits:
– governed by multiple loci: QTLs
– produce continuous variation (e.g., height)
– need to be modeled via phenotype

Quantitative Traits

• Phenotype
– calculated from QTL effects

– additive effects are central (breeding value)

– non-additive effects can also be modeled
• dominance, epistasis

– environmental noise can be added

– phenotypic plasticity can be included

– the final result: a phenotypic trait value

Quantitative Traits

• Fitness
– a function of phenotypic trait value
– often modeled as a fitness function

directional stabilizing both disruptive

others:
balancing

truncating

“squashed
 stabilizing”

etc.

The Big Picture

• QTL mutations have an effect size

• Phenotype is the sum of all effects

• Fitness is some function of phenotype

• Fitness effects are assigned to individuals

live demo

Surprise Guest Star
Tony Long!

Yeast E&R from a synthetic base population

18-way	synthetic	
recombinant		
population

Experimental Evolution Strategy

Mon
isolate	random	spores	
&	mate	haploids

Tues

WedsThursFri

Sat

Sun

sporulate

recover	diploids	&	
passage	in	liquid	
culture

Complex E&R experiment

• Sex on Friday
• Recover spores and mate on Tuesday

(bottleneck to 105 - 106 cells)
• Asexual growth in media with chemical

challenge
• 3 transfers per week (100-fold dilution)
• 107-109 cells during selection/asexual

growth

Would	like	quantitative	predictions	…	but	
this	experiment	seemed	painful	to	model

~30K,	less	
than	real

• 9	hours	
• 25	Gb	memory

4.5

5.0

5.5

6.0

6.5

7.0

0 100 200 300 400
time

lo
g(

N
)

log10 pop size

0

20

40

60

80

0 100 200 300 400
time

ph
en

o
(%

)

i
1

2

3

4

5

6

average phenotype as percent of optima

0.75

1.00

1.25

0 100 200 300 400
time

Va

i
1

2

3

4

5

6

additive genetic variance relative to base

SLIM!

1800	SNPs
180	SNPs
18	SNPs

Optimum	not	
reached	yet

haploid alleles for a single chromosome

rhc 1

18F13v2 recombinant haploid clones chrXII
unknown
multiple_founders
AB1
AB4
A5
A6
A7
A8
A9
A11
A12
B5
B6
B7
B8
B9
B12

rhc 2

rhc 3

rhc 4

rhc 5

rhc 6

rhc 7

rhc 8

rhc 9

rhc 10

0 100 200 300 400 500 600 700 800 900 1000

Position (kb)

re
al

sim
ul
at
ed

#SNPs	=	1800 #SNPs	=	180

#SNPs	=	18

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
00

0.
10

0.
20

0.
30

position

fr
eq
ue
nc
y

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●
●●

●
●

●

●

●

●
●●

●

●●
●
●
●

●
●

●
●●●
●

●
●
●
●●
●
●●●●

●
●●●●●●

●

●

●
●●●●●

●

●

●

●

●
●●●

●
●

●

●
●
●

●

●●

●

●

●
●
●●
●
●
●
●
●●●●

●●

●●

●

●●

●
●●
●
●
●●

●●

●
●

●●

●
●●
●●
●

●●●
●
●
●
●●
●
●●
●

●
●●
●●
●●
●●●
●
●●

●●

●
●
●●
●
●

●

●●●●●●●●
●
●●

●●●
●
●

●

●●
●

●

●

●
●
●

●
●

●

●

●

●
●
●●
●

●
●

●

●
●
●

●

●

●
●
●

●●

●●●

●●●
●

●
●

●

●

●●

●
●
●

●●
●
●
●
●
●

●
●●
●●●●

●
●

●
●●

●●

●
●
●●
●●

●

●●
●●
●
●●●●

●

●

●●
●
●

●
●●●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●●
●

●
●

●●

●

●

●

●●

●
●

●

●

●●

●

●
●

●●
●

●●●

●

●

●
●
●
●
●

●

●

●

●

●●●
●

●
●
●
●●●●●

●

●●

●

●

●

●●
●
●
●
●
●●

●
●
●
●

●
●

●

●

●●

●
●
●
●●

●●

●●●
●●●●●●

●

●

●

●

●

●
●
●
●

●

●

●
●●

●

●
●●
●●●
●
●
●
●●●●●●

●
●

●●
●
●●
●

●●

●
●

●

●

●
●

●●

●●●
●●

●
●
●●●

●
●●

●
●
●●
●
●●
●●
●
●

●
●

●●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●●
●●●●

●

●

●
●

●
●

●

●

●

●

●
●
●

●
●
●
●

●
●

●●●●
●●●●●

●
●●

●
●
●●
●●
●
●●●●

●●

●
●

●
●

●

●

●●

●

●

●
●●●
●
●

●●

●●

●●

●

●

●●●

●
●●
●
●

●
●●●●

●
●●●
●
●●
●
●●
●
●

●

●●●●

●
●
●
●●

●

●●●
●

●●

●
●
●

●

●●●

●

●

●

●

●
●
●●
●

●
●
●●

●
●●
●●
●●

●
●

●●

●
●●
●●
●
●●●
●
●

●
●

●
●
●

●

●●

●
●

●

●

●
●●●●

●

●
●●●●

●

●
●
●
●

●
●●●

●

●

●

●

●
●●
●●

●●
●●

●
●

●●

●

●

●●●
●●●
●●
●●●

●
●●

●
●●
●●

●●

●●

●
●

●

●
●●●

●
●
●

●●
●

●

●
●
●●●
●●
●
●
●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●
●
●

●●

●
●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●●
●

●

●

●

●

●

●●

●●

●●
●
●

●●
●
●

●
●●●
●●

●●

●
●

●●●

●

●

●
●●

●●●●
●
●

●
●
●

●●●
●
●●
●●●●●●●●

●●

●
●
●
●
●

●
●

●

●

●
●●

●

●

●

●
●
●
●●
●
●
●

●
●

●●●●●●

●
●

●

●●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●
●●
●●●
●
●
●●
●●●

●
●●●

●

●
●●

●

●
●●

●
●●
●

●

●

●

●

●

●
●●
●
●●●
●
●

●

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

position

fr
eq
ue
nc
y

●●
●
●●●●●●

●
●
●●●
●●●
●
●
●●●●

●
●

●
●●

●
●●
●●

●

●●
●

●

●
●

●

●

●

●
●

●●

●
●
●
●
●
●
●
●●●●●●●●●●●●

●●●
●●●●●●

●●●●
●●●●●

●
●●●●●

●●
●●
●
●
●●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●●
●
●
●●
●●●
●

●●
●
●●●●●●

●
●

●●●●●●
●●
●

●
●
●

●●
●

●

●

●●

●

●
●
●

●●

●

●

●
●
●
●●
●

●
●

●
●
●

●

●

●

●
●
●
●
●

●●
●
●●

●

●
●●●●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●
●
●
●●●
●●●●●●

●●●
●

●●●●●●●●
●●●●●●●●●

●

●●
●●
●
●●●●●●●

●
●●
●
●●

●
●●
●●

●
●
●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●

●●
●
●●
●●
●
●

●●
●●

●
●

●
●
●
●●
●

●●●●●●●●
●●
●
●●

●●
●
●●
●●
●●●●●●●●●●●

●
●
●
●●●●●●

●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●
●

●●
●
●
●●●
●●●
●
●
●●
●●●●●●●

●
●●●●●

●●●●●●●
●●
●
●●●●

●
●

●●
●●●
●●●●●

●●
●
●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●●
●
●
●●
●

●
●●●●●

●●●
●●●●●●●●●

●
●
●●●●

●
●●●
●●●●●

●●
●●●

●●●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●
●
●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●
●
●●
●

●

●
●

●
●
●●●●

●●●
●
●
●
●

●●●
●

●

●●
●
●●

●
●
●●
●

●

●
●

●

●

●
●

●

●

●●

●●
●

●●

●
●
●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●●
●

●
●●
●●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●

●
●●●●●

●
●●●
●●●●●

●●
●
●
●
●●
●●●●

●
●●
●
●●●
●●●●

●
●●●●

●

●●●
●

●
●●●●

●●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●
●
●●
●●
●●●●

●
●
●
●

●
●●●

●

●
●

●

●

●

●

●●●●●●
●●●
●●
●
●●
●●●●●●●●●

●
●●
●●●●●

●●●●●●
●●●●●●

●●●●●
●●
●●●●

●●●●
●●
●●
●●●●●●●●●

●
●●
●●
●●●●●●●●●●●●●●

●
●●
●●●●●●●●

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
0

0.
2

0.
4

0.
6

position

fr
eq
ue
nc
y

●●●●●●
●●●●●●●

●●●
●●●●●●

●
●
●
●
●●●●●●●●●

●●●●●
●
●
●●●●●

●●●●
●
●●●
●●●●●

●
●●
●●●●

●●
●●●●●●●●

●●●●●●●●●●●●
●●
●●●●●

●●
●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●
●●●●●●●

●●●●●
●●●●

●●●●●●●●
●●●●●●

●●
●●●●●●●●

●●●●●●
●●●
●
●
●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●
●●
●●
●●●●●

●●●●
●●●●●●●●●

●●●●●●●●
●●
●●●●

●●●
●●●●●●●●

●●
●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●
●●●●●●

●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●
●●●●●●

●●●●●
●●
●●
●
●●●
●●●●

●

●●●

●●
●●●

●
●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●●

●

●
●

●●

●●●
●●●●●●

●●●●
●●
●●●●●●●●●

●●●●●
●●●
●●●●

●
●

●
●●
●
●
●
●●
●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●●●●●●●●●

●
●●●●●●

●●●●●●●●●
●
●●●●●

●●●●●●
●●●
●●●●●●●●

●
●●●●●●●●●●●●●●

●●●●

●●
●●●
●
●●●●●

●●
●
●
●●●●

●●●
●●●●●●●●

●●●●●●●●
●●●
●
●●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●
●●
●●●●●●●

●●●●●●●●
●
●●●●●

●●●●●●●●●
●●
●●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●
●●●
●
●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●
●●●●●

●●
●●●●●●●●●●

●●
●●
●●

●●
●
●

●●
●●
●●
●
●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●
●●
●

●●●
●

●●●●●●●●●●
●●●●●●●●●●

Pollock	Plots

Talk outline

• What is SLiM? Why use SLiM?

• An introduction to Eidos and SLiM

• A survey of example models

• Population-genetic models in SLiM

• Quantitative-genetic models in SLiM

• Closing remarks

bit.ly/slim-discuss

messerlab.org/slim/

bhaller@mac.com

Resources

https://messerlab.org/slim/
https://messerlab.org/slim/

Now available online, free, at messerlab.org/slim/

SLiM Workshops

Sweden, 2019 Iceland, 2020

UK, 2019

https://messerlab.org/slim/

Acknowledgements

Thanks to Simon Aeschbacher, Pamela Alamilla, Rodrigo Pracana Fragoso De Almeida, Jorge Amaya, Bill Amos, Chenling
Antelope, Jaime Ashander, Hannes Becher, Emma Berdan, Jeremy Berg, Gertjan Bisschop, Tom Booker, Gideon Bradburd,
Jason Bragg, Vince Buffalo, Yoann Buoro, Richard Burns, Ian Caldas, Bryce Carson, Sam Champer, Deborah Charlesworth,
Jeremy Van Cleve, Jonathan Cocker, Zuxi Cui, Jean Cury, Michael DeGiorgio, A.P. Jason de Koning, Emily Dennis, Jordan
Rohmeyer Dherby, Russell Dinnage, Alan Downey-Wall, Ian Dworkin, Julia Frank, Jared Galloway, Jesse Garcia, Kimberley
Gilbert, Graham Gower, Alexandre Harris, Kelley Harris, Rebecca Harris, Matthew Hartfield, Ding He, Jody Hey, Marcus
Hicks, Kathryn Hodgins, Christian Huber, Melissa Jane Hubisz, Emilia Huerta-Sanchez, Chaz Hyseni, Jacob Malte Jensen,

Peter Keightley, Jerome Kelleher, Andy Kern, Bhavin Khatri, Bernard Kim, Isabel Kim, Jere Koskela, Athanasios
Kousathanas, Peter Krawitz, Chris Kyriazis, Benjamin Laenen, Anna Maria Langmüller, Áki Láruson, Stefan Laurent, Clancy

Lawler, Anita Lerch, Mitchell Lokey, Eugenio Lopez, Kathleen Lotterhos, Nicolas Lou, Andrew Marderstein, Sebastian
Matuszewski, Mikhail Matz, Rupert Mazzucco, Christopher McAllester, Maéva Mollion, Miguel Navascués, Chase Nelson,

Dominic Nelson, Bruno Nevado, Tram Nguyen, Etsuko Nonaka, Boyana Norris, Nathan Oakes, Nick O’Brien, Omar
Eduardo Cornejo Ordaz, Matt Osmond, Greg Owens, Josephine Paris, Harvinder Pawar, Martin Petr, Denis Pierron,

Fernando Racimo, Peter Ralph, Erik Regla, David Rinker, Murillo Fernando Rodrigues, Andrew Sackman, Aaron Sams,
Kieran Samuk, Sara Schaal, Derek Setter, Elissa Sorojsrisom, Onuralp Söylemez, Fabian Staubach, Stefan Strütt, Michelle Su,
Anastasia Teterina, Rob Unckless, Magnus Dehli Vigeland, Nathan Villiger, Christos Vlachos, Silu Wang, Clemens L. Weiß,
James Whiting, Alexander Whitwam, Aaron Wolf, Yan Wong, Yannick Wurm, Alexander Xue, Justin Yeh, and Yulin Zhang.
Special thanks also to the Messer Lab, the stackoverflow community, Kevin Thornton, Ryan Hernandez, and Dmitri Petrov.

Questions!
(and SLiM stickers!)

Extra slides

How to use SLiM?

• Do initial modeling in SLiMgui
– interactive model development & visual debugging
– syntax coloring, online docs, code completion

• Do production runs on the cluster
– trivial to build and run on a computing cluster
– do many replicate runs simultaneously, one per core

• Do post-run analysis in Eidos, Python, or R
– a lot of analysis can be done in-script in Eidos
– .trees output can be read in Python with pyslim

*

*

*

WF

1. Execution of early() events

2. Generation of offspring:

3. Removal of fixed mutations

4. Offspring become parents

6. Fitness value recalculation
using fitness() callbacks

7. Generation count increment

2.1. Choose source subpop

2.2. Choose parent 1

2.3. Choose parent 2
(mateChoice() callbacks)

2.4. Generate the offspring
(including mutation() and
recombination() callbacks)

2.5. Suppress/modify child
(modifyChild() callbacks)

5. Execution of late() events

0. Execution of first() events

nonWF

2. Execution of early() events

1. Generation of offspring:

5. Removal of fixed mutations

4. Selection (incl. survival())

3. Fitness value recalculation
using fitness() callbacks

7. Generation count increment,
individual age increments

1.1. Call reproduction()
callbacks for individuals

1.2. The callback(s) make
calls requesting offspring

1.3. Generate the offspring
(including mutation() and
recombination() callbacks)

1.4. Suppress/modify child
(modifyChild() callbacks)

6. Execution of late() events

0. Execution of first() eventsThe tick cycle

The Crossover Breakpoints Model

• During gamete generation:
– breakpoints are drawn by probability
– a simple crossover model is the default

The DSB Model

• Each breakpoint initiates gene conversion
– DSBs can be crossovers or non-crossovers
– gene conversion tracts can be simple or complex
– heteroduplex mismatch repair, GC biased repair

Nucleotide-based Models

• Optional facilities

– Trinucleotide-based mutation rates

– Reading and writing FASTA, VCF files

– Getting the nucleotide sequence

– Getting the codon sequence

– Getting the amino acid sequence

– Hotspot maps (variable mutation rate)

– GC-biased gene conversion (gBGC)

Tree sequences

9

75

12

1 0 4 2 3

8
75

9

0 4 1 2 3

75

0 4

8

1 2 3

10

56

11

3 1 4 0 2

10530

Genome coordinates
8

• A record of the ancestry at every position
– Originally from coalescent modeling (msprime)

– Extremely compact due to correlations

– Very fast to traverse and calculate statistics

Tree sequences

9

75

12

1 0 4 2 3

8
75

9

0 4 1 2 3

75

0 4

8

1 2 3

10

56

11

3 1 4 0 2

10530

Genome coordinates
8

• Tree sequence structure
– Leaves are “samples” – often extant individuals

– Internal nodes are ancestors

– In SLiM, roots are the first generation

Tree-sequence recording

9

75

12

1 0 4 2 3

8
75

9

0 4 1 2 3

75

0 4

8

1 2 3

10

56

11

3 1 4 0 2

10530

Genome coordinates
8

• Tracks the ancestry tree at every position
– Neutral mutations can be overlaid after the fact

– Neutral burn-in can be done with the coalescent

– Recapitation can construct a coalescent history

Tree-sequence recording

• Records every new genome as a node

• Records every crossover as an edge

• Records every mutation

• This produces a huge memory footprint!
– Simplification needs to be done periodically
– Discards branches that are extinct
– Discards intermediate nodes along branches
– SLiM automatically simplifies periodically
– Explicitly simplifying can improve performance

Tree-sequence recording

• Enable tree-sequence recording
– initializeTreeSeq()

• Control simplification if desired
– simplificationRatio, simplificationInterval
– treeSeqSimplify()

• Remember particular individuals if desired
– treeSeqRememberIndividuals()

• Output a .trees file at completion
– treeSeqOutput()

A complete tree-seq model
initialize() {
 initializeTreeSeq();
 initializeMutationRate(0);
 initializeMutationType("m1", 0.5, "f", 0.0);
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, 1e8-1);
 initializeRecombinationRate(1e-8);
}
1 {
 sim.addSubpop("p1", 500);
}
5000 late() {
 sim.treeSeqOutput("final.trees");
}

• Calls initializeTreeSeq() and treeSeqOutput()
• Uses a (neutral) mutation rate of zero

Tree-sequence analysis in Python

• SLiM:
– runs forward genetic simulations

• tskit:
– provides a foundation for tree sequences

• msprime:
– performs mutation and coalescence

• pyslim:
– knows about SLiM .trees files specifically

Tree-sequence analysis in Python

• Typical workflow:

– run a simulation in SLiM and save a .trees file

– read the .trees file from SLiM with tskit

– mutate it, recapitate it, etc. with msprime

– perform analyses upon it with Python

– write out a modified .trees file

Tree-sequence analysis in Python

SLiM simulation

tree sequence in Python

tskit to import .trees file

modified tree sequence

msprime to mutate, recapitate, etc.

output .trees file

analysis with msprime / pyslim

A complete Python analysis script

import msprime, tskit

ts = tskit.load("final.trees").simplify()
mutated = msprime.mutate(ts, rate=1e-7, random_seed=1, keep=True)
mutated.dump("final_overlaid.trees")

• Import msprime and tskit packages

• Load the saved .trees file with tskit

• Use msprime to overlay mutations

• Write out the new tree sequence

Tree-sequence recording

• What’s the point again?

• Ancestry information is useful

• Speed
– Without tree-seq, 211.9 seconds

– With tree-seq, 4.37 seconds

– Almost a 50× speedup

– Why? Neutral mutations are overlaid

– Memory usage is also lower

chromosome length

tim
e

(s
ec

on
ds

)

105 106 107 108 109 1010

10
−1
10
0
10

10
2
10
3
10
4
10
5
10
6

SLiM (extrapolated)
SLiM treeSeq
SLiM treeSeq (pre-overlay)
msprime coalescent (n = 2N)
msprime coalescent (n = 2N /100)

Haller et al. (2019), Molecular Ecology Resources

Recapitation

• Forward simulation needs burn-in
– provides an equilibrium initial state

• Burn-in can take a very long time!

• msprime can do a coalescent burn-in

• But recapitation is even better:
– allows neutral burn-in to be skipped
– a coalescent history is added afterwards
– neutral mutations can then be overlaid
– even faster than a coalescent burn-in

Resources

Multispecies modeling

• SLiM 4 adds support for multiple species
• Ecological interactions:

• predation, competition, parasitism,
mutualism, within-host evolution, …

• individual-based spatial interactions
between species (local prey search, local
host search, local resource competition)

• Eco-evolutionary dynamics
• Coevolutionary dynamics

Multispecies modeling

• Now, SLiMSim represents one simulation:

Chromosome

MutationType

GenomicElementType

Subpopulation

MutationType MutationType

GenomicElementType

Individual Individual

GenomicElement GenomicElement

…

…

…

…

:

:

Tree-sequence tables InteractionTypes …LogFiles

SLiMSim

Multispecies modeling

• In SLiM 4, SLiMSim represents one species:

Chromosome

MutationType

GenomicElementType

Subpopulation

MutationType MutationType

GenomicElementType

Individual Individual

GenomicElement GenomicElement

…

…

…

…

:

:

Tree-sequence tables …

Species

Chromosome

MutationType

GenomicElementType

Subpopulation

MutationType MutationType

GenomicElementType

Individual Individual

GenomicElement GenomicElement

…

…

…

…

:

:

Tree-sequence tables …

Species

Community

InteractionTypes

LogFiles

…

Multispecies modeling

• SLiMSim has become Species
• Community has been added on top
• Each species is independent:

• separate genetics & behavior
• separate scripting and callbacks
• separate tree-sequence recording

• Separate timescales; but their
execution in each tick is interleaved!

Multispecies modeling

• Time is now represented in ticks and cycles:

species fox
modulo 3
phase 5

species mouse
modulo 1
phase 1

tick

1

2

3

4

5

6

7

8

9

cycle 1

cycle 2

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

In
te

re
av

ed
 ti

ck
 c

yc
le

s 1. Execution of early() events

2. Generation of offspring:

3. Removal of fixed mutations

4. Offspring become parents

6. Fitness value recalculation
using fitness() callbacks

7. Tick/cycle count increment

2.1. Choose source subpop

2.2. Choose parent 1

2.3. Choose parent 2
(mateChoice() callbacks)

2.4. Generate the offspring
(including mutation() and
recombination() callbacks)

2.5. Suppress/modify child
(modifyChild() callbacks)

5. Execution of late() events

The sequence of events within one
cycle in WF models.

0. Execution of first() events

2. Execution of early() events

1. Generation of offspring:

5. Removal of fixed mutations

4. Selection (incl. survival())

3. Fitness value recalculation
using fitness() callbacks

7. Tick/cycle count increment,
individual age increments

1.1. Call reproduction()
callbacks for individuals

1.2. The callback(s) make
calls requesting offspring

1.3. Generate the offspring
(including mutation() and
recombination() callbacks)

1.4. Suppress/modify child
(modifyChild() callbacks)

6. Execution of late() events

The sequence of events within one
cycle in nonWF models.

0. Execution of first() events

