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Forward genetic simulation

• “Forward”: 
– runs forward from an initial state 

(vs. coalescent methods) 

• “Genetic”: 
– explicit loci on a chromosome 

(vs. phenotypic simulations) 

• “Simulation”: 
– individual-based modeling 

(vs. analytical modeling)



Why do simulations?

• Fitting empirical population genomic data 
– analyzing past evolutionary forces 
– predicting future evolution 

• Analyzing theoretical evolutionary models 
– predicting the consequences of  a new theory 
– comparing multiple theories 

• Developing statistical methods 
– testing a method’s accuracy, bias, or power 
– generating datasets for machine learning



Why do forward simulations?

• Evolution is complex: 
– complex demography and population structure 
– non-random mating and complex mating systems 
– spatial structure and non-random dispersal 
– spatial and temporal variation in selection 
– frequency-dependent selection, kin selection, etc. 
– realistic genetic/chromosomal structure 
– epistasis, polygenic traits, pleiotropy 

– multiple loci under selection 
– variable recombination / mutation rate



Why use SLiM?



Why use SLiM?

• Flexible and customizable with Eidos 

– scriptability means there are (almost) no limits 
– similar to R in its syntax and function names 
– ends statements with semicolons; zero-based!



Why use SLiM?

• Very fast: SLiM is highly optimized
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Why use SLiM?

• Interactive and graphical 
– easy to visualize / debug / explore



Why use SLiM?

• Open source on GitHub, GPL license 

– free, reusable, shareable, debugged, easy!
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live demo



An introduction to Eidos



Data types

• NULL: no explicit value 

• logical: a Boolean true/false value (T/F) 

• integer: a 64-bit signed integer (10, -27) 

• float: a floating-point number (10.0, -2.7) 

• string: a sequence of  characters ("foo") 

• object: an instance of  a class (Individual)



Operators

• Arithmetic: +, -, *, /, %, ^, : 

• Logical: &, |, ! 

• Comparison: <, >, <=, >=, ==, != 

• Assignment: = 

• Precedence and function call: () 

• Subset: [] 

• Property access and method call: .

 6 + 2*7 

 T & !F 

 2+2 == 4 

 x = 8 

 (6+2) * 7 

 x[5] 

 foo.bar 
 



Control flow

• if-else: conditional execution 
– if (condition) statement; else statement; 

• while: loop on a condition, 0+ times 
– while (condition) statement; 

• do-while: loop on a condition, 1+ times 
– do statement; while (condition); 

• for: loop over the values in a vector 
– for (i in vector) statement;



Built-in functions

• Math: abs(), ceil(), log(), setUnion(), … 

• Statistics: max(), mean(), sd(), cov(), … 

• Distributions: rnorm(), rpois(), runif(), … 

• Vectors: c(), rep(), seq(), sample(), … 

• Values: all(), any(), identical(), sort(), … 

• Output: cat(), print(), paste(), str(), … 

• Types: isFloat(), asFloat(), … 

• Filesystem: readFile(), writeFile(), …



Objects, properties, methods

• Objects represent entities: 
– e.g., individuals, mutations, subpopulations 

• Objects have properties: 
– attributes like age, sex, spatialPosition 
– individual.age returns the age of  individual 
– individual.age = 10; changes its age 

• Objects have methods: 
– methods perform complex operations 
– individual.containsMutations(muts)



An introduction to SLiM



SLiM Eidos classes

• Chromosome hierarchy: 

• Chromosome 

• MutationType 

• GenomicElementType 

• GenomicElement 

• Other classes: 

• InteractionType 

• LogFile 

• SLiMEidosBlock 

• SLiMgui

• Community hierarchy: 

• Community 

• Species 

• Subpopulation 

• Individual 

• Genome 

• Mutation 

• Substitution 

• Popgen utilities, 
nucleotide utilities, etc.



The chromosome hierarchy 
Genomic elements, genomic element types, and mutation types

• The chromosome defines the genetic structure 
• It is a sequence of  elements (GenomicElement) 
• Each element has a type (GenomicElementType) 
• Each type draws from a DFE (MutationType)



The community hierarchy

• The community contains one or more species 
• Each species contains subpopulations 
• Each subpopulation contains individuals 
• Each individual contains genomes 
• Each genome contains mutations
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Individuals and genomes

• Individuals (class Individual) are organisms 
• Individuals are born, mate, die, … 
• Each individual has two genomes (class Genome) 
• Each genome has L discrete base positions

0 L−1



Mutations

• Mutations (class Mutation) live in genomes 
• Genomes begin empty (the ancestral state) 
• Mutations represent a non-ancestral allele (SNP) 
• Mutations have properties: selection coefficient

0 L−1



The “SLiM core”

• SLiM is divided into the “core”… 
• Optimized C++ to run the tick cycle 
• Default behaviors for simple models: 

• Fitness, mate choice, gamete generation, 
mutation, recombination, mortality, … 

• … and everything else, in Eidos script: 
• Events (first()/early()/late()) 
• Callbacks



SLiM callbacks

• fitness(): individual-based fitness effects 

• mateChoice(): non-random mating effects in WF models 

• reproduction(): scripted reproduction in nonWF models 

• modifyChild(): individual customization of  offspring 

• mutation(): customization of  the mutational process 

• recombination(): customization of  recombination 

• survival(): influencing mortality in nonWF models 

• interaction(): spatial interactions (competition, mating)



WF versus nonWF

• SLiM supports two different model types: 
– WF: Wright–Fisher 
– nonWF: non-Wright–Fisher 

• Differences: 
– tick cycles 
– offspring generation 
– population regulation 
– age structure

– fitness models 
– demography 
– mate choice 
– migration



• Population size is a parameter 

• Population regulation is automatic 

• Fitness affects mating probability 

• Selection is soft (relative fitness) 

• Non-overlapping generations 

• No age structure 

• Migration is due to parameters

WF Models



• Population size is emergent 

• Population regulation is scripted 

• Fitness affects viability/survival 

• Selection is hard (absolute fitness) 

• Generations can overlap 

• Age structure is emergent 

• Migration is scripted

nonWF Models



Fitness

• Fitness is a multiplicative combination of  effects 
• Fitness effects come from: 

• mutations (1 / 1+hs / 1+s) 
• fitness() callbacks – per mutation 
• individual fitnessScaling values 
• subpopulation fitnessScaling values 

• This allows: 
• QTLs, behavior, spatiotemporal variation…
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The Gravel model (5.4)

• Simulating human evolutionary history 
• Demographic events, exponential growth
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Introgression & sweeps (9.7)

• Introgression of  a single introduced mutation 
• Ten subpopulations connected by migration
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Gene drives (12.3)

• Simulating CRISPR gene drive 
• Fixes despite negative fitness effects 
• Fixes despite going against migration
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Metapopulations (5.3.4)

• Many subpopulations connected by migration 
• The connection pattern can be spatial, or not
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Adaptive walks (14.8)

• A QTL-based model with pleiotropy (M-matrix) 
• Two phenotypic traits defined by additive QTLs
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Continuous space (15.10)

• Individuals live in a continuous 2-D space 
• A landscape map of  the world is used 
• Population expansion out of  Africa



Local adaptation (15.11)

• Individuals live in a continuous 2-D space 
• A map defines a heterogeneous environment 
• Adaptation to the local environment results



Nucleotide-based models (18.1)

• Track the nucleotide sequence of  every genome 
• Mutations have an associated nucleotide 
• Mutation rates are sequence-dependent 
• Realistic gene conversion, including gBGC

GAATGTCGGTTAGAGCAACCTAGCTTCTCAGATCGCAATA 
GAATGTCCGTTAGAGCAACCTAGCTTCTCAGATGGCTATA 
GAATGTCCGTTAGAGCAACCTAGCTTCTCAGATGGCCATA 
GAATGTCGGTTAGAGCATCCTAGCTTCTCAGATCGCAATA 
GAATGTCGGTTAGAGCAACCTAGCTTCTCAGATCGCAATA 
GAATGTCCGTTAGAGCAACCTAGCTTCTCAGATGGCAATA 
GAATGTCGGTTAGAGCATCCTAGCCTCTCAGATGGCAATA 
GAATGTCGGTTAGAGCATCCTAGCTTCTCAGATCGCAATA



Multispecies models (19.4 & 19.6)

• Simulate more than one species in a model 
• Ecology: competition, predation, parasitism, … 
• Coevolutionary and eco-evolutionary dynamics
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Tree sequences & ancestry (17.10)

• Tracking the ancestry tree at every position 
• Mean tree height is a proxy for diversity at a site 
• After a sweep, diversity is lowest near the sweep 
• Recapitation constructs neutral burn-in history
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Population-genetic models

• Demography: 
• Discrete subpopulations with migration 
• Continuous space with dispersal 

• Ploidy: 
• Diploid, haploid, haplodiploid*, …* 

• Sex and mating: 
• Hermaphrodites, separate sexes, X/Y, …* 
• Biparental sexual mating 
• Cloning, selfing, horizontal gene transfer*, …*



Population-genetic models

• Any chromosome length 
• Any number of  chromosomes* 
• Any number of  loci and alleles 
• Any recombination-rate map 
• Any mutation-rate map 
• Any distributions of  fitness effects 
• Any individual effects* on fitness, mortality, 

mate choice, recombination, migration, 
dispersal, mutation, …



Population-genetic models

• Selective sweeps 
• partial or full 
• conditional on fixation or establishment 
• soft and hard sweeps of  various kinds 

• Background selection 
• Local adaptation 
• Introgression 
• Reproductive isolation (partial or full) 
• Speciation



live demo
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Quantitative Traits

• Mendelian traits: 
– governed by a single locus 
– produce discrete outcomes 
– can be modeled with selection coefficients 

• Quantitative traits: 
– governed by multiple loci: QTLs 
– produce continuous variation (e.g., height) 
– need to be modeled via phenotype



Quantitative Traits

• Phenotype 
– calculated from QTL effects 

– additive effects are central (breeding value) 

– non-additive effects can also be modeled 
• dominance, epistasis 

– environmental noise can be added 

– phenotypic plasticity can be included 

– the final result: a phenotypic trait value



Quantitative Traits

• Fitness 
– a function of  phenotypic trait value 
– often modeled as a fitness function

directional stabilizing both disruptive

others:
balancing

truncating

“squashed  
  stabilizing”

etc.



The Big Picture

• QTL mutations have an effect size 
  

• Phenotype is the sum of  all effects 
  

• Fitness is some function of  phenotype 
  

• Fitness effects are assigned to individuals 
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Surprise Guest Star 
Tony Long!



Yeast E&R from a synthetic base population

18-way	synthetic	
recombinant		
population



Experimental Evolution Strategy

Mon
isolate	random	spores	
&	mate	haploids

Tues

WedsThursFri

Sat

Sun

sporulate

recover	diploids	&	
passage	in	liquid	
culture

Complex E&R experiment

• Sex on Friday 
• Recover spores and mate on Tuesday 

(bottleneck to 105 - 106 cells) 
• Asexual growth in media with chemical 

challenge 
• 3 transfers per week (100-fold dilution) 
• 107-109 cells during selection/asexual 

growth

Would	like	quantitative	predictions	…	but	
this	experiment	seemed	painful	to	model



~30K,	less	
than	real

• 9	hours	
• 25	Gb	memory

4.5

5.0

5.5

6.0

6.5

7.0

0 100 200 300 400
time

lo
g(

N
)

log10 pop size

0

20

40

60

80

0 100 200 300 400
time

ph
en

o 
(%

)

i
1

2

3

4

5

6

average phenotype as percent of optima

0.75

1.00

1.25

0 100 200 300 400
time

Va

i
1

2

3

4

5

6

additive genetic variance relative to base

SLIM!

1800	SNPs
180	SNPs
18	SNPs

Optimum	not	
reached	yet



haploid alleles for a single chromosome
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#SNPs	=	1800 #SNPs	=	180

#SNPs	=	18
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Talk outline

• What is SLiM?  Why use SLiM? 

• An introduction to Eidos and SLiM 

• A survey of  example models 

• Population-genetic models in SLiM 

• Quantitative-genetic models in SLiM 

• Closing remarks



bit.ly/slim-discuss

messerlab.org/slim/

bhaller@mac.com

Resources

https://messerlab.org/slim/
https://messerlab.org/slim/


Now available online, free, at messerlab.org/slim/

SLiM Workshops

Sweden, 2019 Iceland, 2020

UK, 2019

https://messerlab.org/slim/
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Questions!
(and SLiM stickers!)





Extra slides



How to use SLiM?

• Do initial modeling in SLiMgui 
– interactive model development & visual debugging 
– syntax coloring, online docs, code completion 

• Do production runs on the cluster 
– trivial to build and run on a computing cluster 
– do many replicate runs simultaneously, one per core 

• Do post-run analysis in Eidos, Python, or R 
– a lot of  analysis can be done in-script in Eidos 
– .trees output can be read in Python with pyslim



*

*

*

WF

1. Execution of early() events

2. Generation of offspring:

3. Removal of fixed mutations

4. Offspring become parents

6. Fitness value recalculation 
using fitness() callbacks

7. Generation count increment

2.1. Choose source subpop

2.2. Choose parent 1

2.3. Choose parent 2
(mateChoice() callbacks)

2.4. Generate the offspring 
(including mutation() and 
recombination() callbacks)

2.5. Suppress/modify child 
(modifyChild() callbacks)

5. Execution of late() events

0. Execution of first() events

nonWF

2. Execution of early() events

1. Generation of offspring:

5. Removal of fixed mutations

4. Selection (incl. survival())

3. Fitness value recalculation 
using fitness() callbacks

7. Generation count increment,
individual age increments

1.1. Call reproduction() 
callbacks for individuals

1.2. The callback(s) make 
calls requesting offspring

1.3. Generate the offspring 
(including mutation() and 
recombination() callbacks)

1.4. Suppress/modify child 
(modifyChild() callbacks)

6. Execution of late() events

0. Execution of first() eventsThe tick cycle



The Crossover Breakpoints Model

• During gamete generation: 
– breakpoints are drawn by probability 
– a simple crossover model is the default



The DSB Model

• Each breakpoint initiates gene conversion 
– DSBs can be crossovers or non-crossovers 
– gene conversion tracts can be simple or complex 
– heteroduplex mismatch repair, GC biased repair



Nucleotide-based Models

• Optional facilities 

– Trinucleotide-based mutation rates 

– Reading and writing FASTA, VCF files 

– Getting the nucleotide sequence 

– Getting the codon sequence 

– Getting the amino acid sequence 

– Hotspot maps (variable mutation rate) 

– GC-biased gene conversion (gBGC)



Tree sequences
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• A record of  the ancestry at every position 
– Originally from coalescent modeling (msprime) 

– Extremely compact due to correlations 

– Very fast to traverse and calculate statistics



Tree sequences
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• Tree sequence structure 
– Leaves are “samples” – often extant individuals 

– Internal nodes are ancestors 

– In SLiM, roots are the first generation



Tree-sequence recording
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• Tracks the ancestry tree at every position 
– Neutral mutations can be overlaid after the fact 

– Neutral burn-in can be done with the coalescent 

– Recapitation can construct a coalescent history



Tree-sequence recording

• Records every new genome as a node 

• Records every crossover as an edge 

• Records every mutation 

• This produces a huge memory footprint! 
– Simplification needs to be done periodically 
– Discards branches that are extinct 
– Discards intermediate nodes along branches 
– SLiM automatically simplifies periodically 
– Explicitly simplifying can improve performance



Tree-sequence recording

• Enable tree-sequence recording 
– initializeTreeSeq()  

• Control simplification if  desired 
– simplificationRatio, simplificationInterval  
– treeSeqSimplify() 

• Remember particular individuals if  desired 
– treeSeqRememberIndividuals()  

• Output a .trees file at completion 
– treeSeqOutput() 



A complete tree-seq model
initialize() { 
 initializeTreeSeq(); 
 initializeMutationRate(0); 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, 1e8-1); 
 initializeRecombinationRate(1e-8); 
} 
1 { 
 sim.addSubpop("p1", 500); 
} 
5000 late() { 
 sim.treeSeqOutput("final.trees"); 
}

• Calls initializeTreeSeq() and treeSeqOutput() 
• Uses a (neutral) mutation rate of  zero



Tree-sequence analysis in Python

• SLiM: 
– runs forward genetic simulations 

• tskit: 
– provides a foundation for tree sequences 

• msprime: 
– performs mutation and coalescence 

• pyslim: 
– knows about SLiM .trees files specifically



Tree-sequence analysis in Python

• Typical workflow: 

– run a simulation in SLiM and save a .trees file 

– read the .trees file from SLiM with tskit 

– mutate it, recapitate it, etc. with msprime 

– perform analyses upon it with Python 

– write out a modified .trees file



Tree-sequence analysis in Python

SLiM simulation

tree sequence in Python

tskit to import .trees file

modified tree sequence

msprime to mutate, recapitate, etc.

output .trees file

analysis with msprime / pyslim



A complete Python analysis script

import msprime, tskit 

ts = tskit.load("final.trees").simplify() 
mutated = msprime.mutate(ts, rate=1e-7, random_seed=1, keep=True) 
mutated.dump("final_overlaid.trees")

• Import msprime and tskit packages 

• Load the saved .trees file with tskit 

• Use msprime to overlay mutations 

• Write out the new tree sequence



Tree-sequence recording

• What’s the point again? 

• Ancestry information is useful 

• Speed 
– Without tree-seq, 211.9 seconds 

– With tree-seq, 4.37 seconds 

– Almost a 50× speedup 

– Why?  Neutral mutations are overlaid 

– Memory usage is also lower
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Recapitation

• Forward simulation needs burn-in 
– provides an equilibrium initial state 

• Burn-in can take a very long time! 

• msprime can do a coalescent burn-in 

• But recapitation is even better: 
– allows neutral burn-in to be skipped 
– a coalescent history is added afterwards 
– neutral mutations can then be overlaid 
– even faster than a coalescent burn-in



Resources



Multispecies modeling

• SLiM 4 adds support for multiple species 
• Ecological interactions: 

• predation, competition, parasitism, 
mutualism, within-host evolution, … 

• individual-based spatial interactions 
between species (local prey search, local 
host search, local resource competition) 

• Eco-evolutionary dynamics 
• Coevolutionary dynamics



Multispecies modeling

• Now, SLiMSim represents one simulation:

Chromosome

MutationType

GenomicElementType

Subpopulation

MutationType MutationType

GenomicElementType

Individual Individual

GenomicElement GenomicElement

…

…

…

…

:

:

Tree-sequence tables InteractionTypes …LogFiles

SLiMSim



Multispecies modeling

• In SLiM 4, SLiMSim represents one species:

Chromosome

MutationType

GenomicElementType

Subpopulation

MutationType MutationType

GenomicElementType

Individual Individual

GenomicElement GenomicElement

…

…

…

…

:

:

Tree-sequence tables …

Species

Chromosome

MutationType

GenomicElementType

Subpopulation

MutationType MutationType

GenomicElementType

Individual Individual

GenomicElement GenomicElement

…

…

…

…

:

:

Tree-sequence tables …

Species

Community

InteractionTypes

LogFiles

…



Multispecies modeling

• SLiMSim has become Species 
• Community has been added on top 
• Each species is independent: 

• separate genetics & behavior 
• separate scripting and callbacks 
• separate tree-sequence recording 

• Separate timescales; but their 
execution in each tick is interleaved!



Multispecies modeling

• Time is now represented in ticks and cycles:

species fox
modulo 3
phase 5

species mouse
modulo 1
phase 1

tick

1

2

3

4

5

6

7

8

9

cycle 1

cycle 2

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9
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yc
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s 1. Execution of early() events

2. Generation of offspring:

3. Removal of fixed mutations

4. Offspring become parents

6. Fitness value recalculation 
using fitness() callbacks

7. Tick/cycle count increment

2.1. Choose source subpop

2.2. Choose parent 1

2.3. Choose parent 2
(mateChoice() callbacks)

2.4. Generate the offspring 
(including mutation() and 
recombination() callbacks)

2.5. Suppress/modify child 
(modifyChild() callbacks)

5. Execution of late() events

The sequence of events within one 
cycle in WF models.

0. Execution of first() events

2. Execution of early() events

1. Generation of offspring:

5. Removal of fixed mutations

4. Selection (incl. survival())

3. Fitness value recalculation 
using fitness() callbacks

7. Tick/cycle count increment,
individual age increments

1.1. Call reproduction() 
callbacks for individuals

1.2. The callback(s) make 
calls requesting offspring

1.3. Generate the offspring 
(including mutation() and 
recombination() callbacks)

1.4. Suppress/modify child 
(modifyChild() callbacks)

6. Execution of late() events

The sequence of events within one 
cycle in nonWF models.

0. Execution of first() events


