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Quantum Phase Transition:
a phase transition between different quantum phases (phases of
matter at T = 0). Quantum phase transitions can only be
accessed by varying a physical parameter — such as magnetic field
or pressure — at T = 0.
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Figure: Phase diagram paradigm



The role of AdS/CFT
The AdS/CFT correspondence provides a tool to study a class of
strongly interacting field theories with Lorentzian symmetry in d
dimensions by mapping the field theories to classical gravity in
d + 1 dimensions.

I equation of state
I real time correlation functions
I transport properties — conductivities, diffusion constants, etc.

The ambitious program: There may be an example in this class of
field theories which describes the quantum critical region of a real
world material such as a high Tc superconductor.

The less ambitious program: By learning about this class of field
theories, we may find universal features that could hold more
generally for QCPs (η/s = ~/4πkB).

There are a few entries in the AdS/CFT dictionary for z > 1
(Kachru, Mulligan, Liu, Balasubramanian, McGreevy, Son, . . . ),
but here we consider only z = 1.



AdS/CFT Models



Holographic Phase Transitions

Goal: To have a simple holographic model of a (classical) phase
transition where we can calculate the phase diagram and transport
coefficients.

S =
1

2κ2

∫
dd+1x

√
−g(R − 2Λ)− 1

4g2

∫
dd+1x

√
−gFµνF

µν

I Einstein-Hilbert produces correlators of the stress tensor Tµν

in the boundary theory.

I Maxwell produces correlators of a global current Jµ in the
boundary.

I To model a (classical) phase transition, we need something
that will serve as an order parameter.



Two Choices of Order

I We can add a charged scalar field

−
∫

dd+1x
√
−g
(
|(∂ − iqA)Ψ|2 + V (|Ψ|)

)
.

The order parameter is the boundary value of Ψ.

I We can promote the Abelian gauge field to an SU(2) gauge
field

Fµν → F a
µν .

We find a vector order parameter which is the boundary value
of Aa

µ.



Motivating the Action

The action, in a loose sense, comes from string theory.

I For d = 4, there is a duality between type IIB string theory in
AdS5 × S5 and maximally supersymmetric SU(N) Yang-Mills
theory in 3+1 dimensions.

I For d = 3, there is a duality between M-theory in AdS4 × S7

and the maximally supersymmetric SU(N) Yang-Mills theory
in 2+1 dimensions.

I The low energy limit of string theory is supergravity. The
actions above are conceivably truncations of the full
supergravity action.

I For conformal field theories with extended supersymmetry,
there is a global R-symmetry that is dual to the gauge field
Fµν in gravity.



Dyonic Black Holes and the QCR

One solution to our scalar action with ψ = 0 is a dyonic black hole
in AdS4. The dyonic black hole is also a solution to the SU(2)
action. Dyonic black holes have electric and magnetic charge.

I The Hawking temperature of the black hole is the
temperature T of the field theory.

I The magnetic field of the black hole is the magnetic field B in
the field theory.

I The electric field of the black hole becomes the charge density
ρ of the field theory.

One can freely tune the temperature and charges of the black hole.



Dyonic Black Holes II

The metric or line element:

ds2 = −g(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2)

The electric and magnetic fields:

A = ρ

(
1

r+
− 1

r

)
dt + B x dy

The warp factor:

g(r) = r2 − 1

4rr+
(4r4

+ + ρ2 + B2) +
1

4r2
(ρ2 + B2)

The temperature:

T =
12r4

+ − ρ2 − B2

16πr3
+



An instability for the scalar action

Assuming V (Ψ) = m2|Ψ|2, Gubser observed an instability for the
scalar to condense when ρ gets too large:

m2
eff = m2 + g ttA2

t

where
gtt = −g(r) ; At =

ρ

rr+
(r − r+) .

The effective mass becomes tachyonic and the scalar condenses in
a narrow region of radial coordinate r .

There is no need for a Ψ4 term!

For the case B = 0, there is only one other scale in the problem,
the temperature, so large ρ corresponds to small T .



The SU(2) instability

The SU(2) action has a similar instability. Let the τ i generate
su(2). For an electrically charged black hole in the τ3 direction,
there is an instability to generate a nonzero A1

x = w :

A = φ τ3 dt + w τ1 dx .

The nonzero w corresponds to a nonzero current in the boundary
field theory!



I The scalar action, while conceptually simple, suffers from the
arbitrariness of V (|ψ|). We will choose V (|ψ|) = m2|ψ|2.

I The SU(2) action is less arbitrary and in d = 4 can be treated
analytically for T ≈ Tc , but suffers from a phase transition
that breaks rotational invariance.

I First, we will summarize the (largely numerical) results for the
scalar action.

I Next, we will sketch some of the analytic results for the SU(2)
action (d = 4).



Superfluidity and Superconductivity Results:

The Scalar Case



The phase transition
Given m2L2 = −2 (above the BF bound), we can choose a scalar
in the field theory with scaling dimension one or two.
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Figure: The value of the condensate as a function of temperature for the
two different boundary conditions: a) from bottom to top, the various
curves correspond to q = 1, 3, 6, and 12; b) from top to bottom, the
curves correspond to q = 3, 6, and 12. Note that Tc ∼

√
ρ.

Probe limit is large q.



Mean field behavior and philosophy

For T . Tc ,
〈Oi 〉 ∼ (Tc − T )1/2 ,

the standard Landau-Ginzburg mean field result.

There is a LG interpretation on the field theory side

fLG =
1

2m∗
|(∇+ iqA)ϕ|2 + a|ϕ|2 +

b

2
|ϕ|4 + . . .

AdS/CFT gives us the full V (ϕ) as a complicated function of our
bulk gravitational action.

We can go away from the universal behavior at small |ϕ| having
assumed (or derived from string theory) a simple form for the
gravitational action.



Superfluid or superconductor?

Two interpretations of the instability

I This U(1) symmetry in the field theory is global, and strictly
speaking we have only spontaneous symmetry breaking — a
superfluid phase transition.

I We can think of the U(1) as being weakly gauged, in which
case we have a superconductor.



The Conductivity from BCS Theory

Figure: Frequency dependence of absorption processes obeying case I and
II coherence factors at T = 0 (solid curves) and T ≈ 1

2Tc (dashed
curves). [Tinkham, Superconductivity, 2nd edition]



Conductivity for dimension one case, probe limit

0 50 100 150 200
Ω

T

0.2

0.4

0.6

0.8

1

1.2

Re@ΣD

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ω

<O1>

Σ

Figure: Left: Plots of the real part of the conductivity versus frequency
for various temperatures. Right: Plots of the conductivity versus
frequency at very low temperature. The dotted red curve is the Im(σ)/5.

Re[σ(ω)] contains a delta function πnsδ(ω) which leads to
superconductivity where ns is the superfluid density.



Conductivity for dimension two case, probe limit
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Figure: Left: Plots of the real part of the conductivity versus frequency
for various temperatures. Right: Plots of the conductivity versus
frequency at very low temperature. The dotted red curve is the Im(σ)/5.

One conclusion that may be drawn from these plots is that 〈O1〉
and

√
〈O2〉 can be intepreted as twice the superconducting gap.



Second Sound (away from the probe limit)

Second sound is a collective motion in two component fluids
sourced (mostly, in the incompressible limit) by temperature
oscillations.

We calculate the speed of second sound from thermodynamic
quantities

v2
2 =

σ2ρs

w

1

(∂σ/∂T )µ
,

where w = ε+ P and σ = s/ρ.
This formula follows from a hydrodynamic analysis.



Second Sound of Helium-4 from Khalatnikov’s Book



Second Sound (3+1 dimensions)

a) b)

Figure: The speed of second sound as a function of T/Tc , computed by
evaluating thermodynamic derivatives: a) O3/2 scalar, b) O5/2 scalar for
a 3+1 dimensional field theory. The speed of second sound vanishes as
T → Tc . u = 0 means no quartic term in V .

with Amos Yarom



Universality at low T

Landau predicted that

lim
T→0

v2
2 =

v2
1

d
,

i.e. second sound becomes a sound wave propagating in a gas of
phonons. Reasonable for helium-4.

We do not find this result. We believe the reason is that the low
temperature limit of this system is not a gas of phonons.

lim
T→0

Cµ
sd
6= 1 , lim

T→0

sT

sT + µρn
6= v2

1

What exactly is it?



Superfluidity and Superconductivity Results:

The SU(2) Case



Why it’s analytic

Starting with an electrically charged black hole at small µ/T where
A = φ τ3 dt, there is a critical chemical potential at which an
instability appears, characterized by a zero mode for A1

x (Basu, He,
Mukherjee, Shieh, 0810.3970 [hep-th]):

∂2
z A1

x +

(
f ′

f
− 1

u

)
∂zA

1
x = −φ

2

f 2
A1

x

where φ = (1− z)µ/πT and f = 1− z4:

A1
x = ε

z2

(1 + z2)2
where

µ

πT
= 4 .

NB: We are working in the probe limit and neglecting the back
reaction of A on the metric.



Speed of Second Sound

The phase transition breaks rotational symmetry, and there are
actually two speeds of second sound

c2
⊥ ≈

140

281

( µ

πT
− 4
)
,

c2
‖ ≈

70

281

( µ

πT
− 4
)
.

We were able to see these results in two ways:

I From the thermodynamic identity mentioned above.

I From poles in the current-current correlation functions.

NB: These results are valid only near Tc .

with Silviu Pufu



The London Equations (half the Meissner effect)

From the current-current correlation functions, we were able to
verify the London equations in the small k and ω limit.

In particular, we saw that the ω → 0 and k → 0 limits commute:

lim
k→0

G ii
33(0, k) = lim

ω→0
G ii

33(ω, 0)

The current is proportional to the vector potential:

〈j3x 〉 ≈ −
2

g2

ε2

96
A3

x and 〈j3y 〉 ≈ −
2

g2

ε2

48
A3

y .



Fulde-Ferrell

I That the order parameter 〈j1x 〉 is a current is strange.

I Reminiscent of an idea by Fulde and Ferrell (also Larkin and
Ovchinnikov) — BCS in a magnetic field

kF↑ − kF↓ > 0



Remarks and Plans for the Future

I Tried to convince you that AdS/CFT is a useful tool for
studying strongly interacting field theories — equations of
state, correlation functions, transport properties.

I The hope is that these field theories may be relevant for
understanding real world condensed matter systems.

I We saw that AdS/CFT can be used to study the
superconducting/superfluid phase transition.

I Embedding this model in string theory.


