Asteroseismic Diagnostics of Subdwarf B Stars

SdB pulsators as probes of stellar astrophysics

Stéphane Charpinet

IRAP – Observatoire Midi-Pyrénées Université de Toulouse / CNRS

Usual collaborators V. Van Grootel (U. de Liège), G. Fontaine & P. Brassard (U. de Montréal), E.M. Green (U. of Arizona), & S.K. Randall (ESO)

Outline

- 1. Introduction
- 2. Adiabatic asteroseismology of sdB stars
- (3. Nonadiabatic asteroseismology of sdB stars)
- 4. Summary and Prospects

Introduction

He core burning EHB (sdB) stars

Most are post-RGB stars having their H-rich envelope almost entirely removed → hot and compact (RG almost naked cores) (see Van Grootel's talk on ways to produce sdB stars)

M peaking around 0.47 Msun Teff ~ 23,000 – 40,000 K log g ~ 5.1 – 6.2

The Impact of Asteroseismology across Stellar Astrophysics (Santa Barbara/USA)

Introduction

He core burning EHB (sdB) stars

Most are post-RGB stars having their H-rich envelope almost entirely removed → hot and compact (RG almost naked cores) (see Van Grootel's talk on ways to produce sdB stars)

M peaking around 0.47 Msun Teff ~ 23,000 - 40,000 K $\log g \sim 5.1 - 6.2$

Two groups of nonradial pulsators

P-modes: periods of ~ 1 – 10 minutes (*V*361 Hya stars; Kilkenny et al. 1997)

G-modes: periods of ~ 1 - 4 hours (*V1093 Her* stars; Green et al. 2003)

+ Hybrid pulsators

Mode properties in sdB stars log L₂² log N² P-modes probe mostly the H-rich envelope H-rich envelope He mantle and the upper He mantle (insensitive to the core) G-modes probe much deeper regions (He mantle and C-O/He core boundary) 92 90 0 -4g, -10 $^{-5}$ log q $\log q = \log (1-m(r)/M)$ Center Photosphere (He burning core)

Propagation diagram (Charpinet et al. 2000)

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

Sensitive to main stellar parameters

P-mode periods strongly sensitive to $\log g$ (or R_*).

Also sensitive to the stellar mass (not shown)

Avoided crossings at high-Teff, low log g (near TAEHB and post-EHB stars)

P-mode period sensitivity to Teff / log g (Charpinet et al. 2002)

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

Sensitive to main stellar parameters

G-mode periods are also sensitive to the location of the star in the $\log g$ – Teff plane

... and to the stellar mass (not shown)

Avoided crossings at high-Teff, low log g (near TAEHB and post-EHB stars)

G-mode period sensitivity to Teff / log g (Charpinet et al. 2002)

Mode properties in sdB stars

Propagation diagram (Charpinet et al. 2000)

composition gradiants

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

P-mode "micro-trapping" (or "acoustic glitches")

Accoustic mode distribution sensitive to the location of the He/H chemical transition – (sharp sound speed variation)

 \rightarrow access to the mass of the H-rich envelope

But mostly insentitive to the core transition

Trapping of p-modes (Charpinet et al. 2000)

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

G-modes provide deeper probes

Stronger influence of the He/H transition

Also sensitive to the core boundary

Typical g-mode weight functions (Charpinet et al. 2000)

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

G-mode envelope trapping

Cyclic perturbations of the g-mode periods depending on the He/H transition position

 \rightarrow access to the mass of the H-rich envelope

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

G-mode envelope trapping

Cyclic perturbations of the g-mode periods depending on the He/H transition position

 \rightarrow access to the mass of the H-rich envelope

Sensitive also to the shape of this transition (smooth or sharp composition gradiant)

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

G-mode connection with the core

Confined modes sensitive to the C-O/He transition (amount of He left in the core)

Confined modes sensitive to the position of this transition (core boundary location)

 \rightarrow access to the size of the mixed core

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

G-mode connection with the core

Confined modes sensitive to the C-O/He transition (amount of He left in the core)

Confined modes sensitive to the position of this transition (core boundary location)

 \rightarrow access to the size of the mixed core

also sensitive to the shape of this transition (smooth or sharp composition gradiant)

October 27, 2011

Mode properties in sdB stars

P-modes probe mostly the H-rich envelope and the upper He mantle (insensitive to the core)

G-modes probe much deeper regions (He mantle and C-O/He core boundary)

G-mode trapping patterns

Various trapping effects interfere, leading to complex g-mode period perturbations

Pulsation frequencies ↔ structural parameters : a complex problem

- Trapping structures interfere in a complicated way
- P-modes (and a few g-modes) out of asymptotic regime (sometimes mixed modes)
- Observed pulsation spectra are generally incomplete (modes are missing)
- Independent mode identification (of the degree *l*) is usually not available
- \rightarrow Simple seismic diagnostic tools are mostly ineffective

Although attempts to detect and interpret g-mode period spacings have been made (Randall et al. 2006; Reed et al. 2011)

Pulsation frequencies ↔ structural parameters : a complex problem

- Trapping structures interfere in a complicated way
- P-modes (and a few g-modes) out of asymptotic regime (sometimes mixed modes)
- Observed pulsation spectra are generally incomplete (modes are missing)
- \bullet Independent mode identification (of the degree ℓ) is usually not available
- \rightarrow Simple seismic diagnostic tools are mostly ineffective

The problem has to be handled with the forward modeling approach

- <u>Principle</u>: searching for the optimal stellar model(s) that best match the observed frequencies (through a χ^2 -type merit function minimisation)
- <u>Method</u>: a global optimisation problem solved by using large grids (brute force method) or optimisation tools to explore a vast multi-dimensional parameter space.

Adiabatic asteroseismology The forward modeling approach

Adiabatic asteroseismology The forward modeling approach

The second optimization

Searching for the minima of $S^2(P_1, ..., P_N)$ in the *N*-dimensional model parameter space with external constraints (e.g., Teff/log g from spectro.)

Adiabatic asteroseismology The forward modeling approach : optimization tools

The second optimization

Searching for the minima of $S^2(P_1, ..., P_N)$ in the *N*-dimensional model parameter space with external constraints (e.g., Teff/log g from spectro.)

A massively parallel Genetic Algorithm for multi-modal, multi-dimension global optimization is used. It localizes all potential solutions (minima of S^2)

→ Capture relevant solutions (wide or narrow loc.)
 → Statement on uniqueness of the solution

Illustration with a test function \sim Maxima of a random Gaussian landscape (M = 200)

Adiabatic asteroseismology Star structure modeling strategies

Models for asteroseismic probing of hot subdwarf pulsators

• Evolutionary models (see Haili Hu & Steven Bloemen Talks)

 \rightarrow suitable for p- and g-mode pulsators (EHB and post-EHB)

- → pro: Stellar interior keeps the history of previous phases (chemical stratification) but past history of sdB stars is not well known (various formation channels)
- \rightarrow cons: require large grid computations (and a grid resolution)

Static envelope models (constant luminosity)

→ suitable for pure p-mode pulsators only (EHB and post-EHB)
 → pro: flexibility for asteroseismology with a higher level of parameterization of inner structures that pulsation modes may be sensitive to
 → pro: no grid, parameter space is explored in a continuous way

• Complete static models in thermal equilibrium (nuclear reactions included)

- \rightarrow suitable for p- and g-mode pulsators (EHB only)
- → pro: flexibility for asteroseismology with a higher level of parameterization of inner structures that pulsation modes may be sensitive to
- → pro: no grid, parameter space is explored in a continuous way

Historical record of sdB stars probed with asteroseismology since 2001

	References	$\log M_{\rm env}/M$	$M \ (M_{\odot})$	$T_{ m eff}$ (K)	$\log g \ ({\rm cm \ s^{-2}})$	Name
_	Brassard et al. (2001)	$-4.31{\pm}0.22$	$0.490 {\pm} 0.019$	$33550 {\pm} 380$	$5.780 {\pm} 0.008$	PG 0014+067
	Charpinet et al. (2005a)	$-4.32{\pm}0.23$	$0.477 {\pm} 0.024$	$34130 {\pm} 370$	$5.775 {\pm} 0.009$	
	Brassard & Fontaine (2008)	-4.13	0.478	$34130{\pm}370$	5.772	
	Charpinet et al. (2003)	$-3.72{\pm}0.11$	$0.490 {\pm} 0.014$	$33150{\pm}200$	$5.800 {\pm} 0.006$	$PG1047{+}003$
	Charpinet et al. (2005b)	$-4.25{\pm}0.15$	$0.457{\pm}0.012$	$33600{\pm}370$	$5.807 {\pm} 0.006$	PG1219 + 534
	Charpinet et al. (2005c)	$-2.97{\pm}0.09$	$0.460 {\pm} 0.008$	$29580{\pm}370$	$5.437 {\pm} 0.006$	Feige 48
→ + rotati	Van Grootel et al. (2008a)	$-2.52{\pm}0.06$	$0.519 {\pm} 0.009$	$29580{\pm}370$	$5.462 {\pm} 0.006$	
	Billères & Fontaine (2005)	-3.00	0.490	32000	5.730	EC05217 - 3914
	Charpinet et al. (2006a)	$-4.18 {\pm} 0.10$	$0.499 {\pm} 0.011$	$35050{\pm}220$	$5.811 {\pm} 0.004$	PG1325 + 101
	Charpinet et al. (2006b)	$-4.92{\pm}0.20$	$0.447{\pm}0.027$	$33300 {\pm} 1700$	$5.711 {\pm} 0.010$	PG0048 + 092
	Randall et al. $(2006b)$	$-4.17 {\pm} 0.08$	$0.540{\pm}0.040$	$34800 {\pm} 2000$	$5.856 {\pm} 0.008$	EC20117 - 4014
	Randall et al. (2007)	$-4.69 {\pm} 0.07$	$0.390 {\pm} 0.010$	$31940{\pm}220$	$5.777 {\pm} 0.002$	PG0911 + 456
	Van Grootel et al. (2008b)	$-4.89{\pm}0.14$	$0.432{\pm}0.015$	28000 ± 1200	$5.383 {\pm} 0.004$	${ m BAL}090100001$
→ + rotati	Charpinet et al. (2008)	$-4.54{\pm}0.07$	$0.459 {\pm} 0.005$	$32780{\pm}200$	$5.739 {\pm} 0.002$	PG1336-018
	van Spaandonk et al. (2008)	-5.78	0.707	$32300{\pm}300$	5.248	$PG1605{+}072$
		-6.22	0.561	$32300{\pm}300$	5.217	
	Van Grootel (2008)	$-5.88 {\pm} 0.04$	$0.528 {\pm} 0.002$	$32300{\pm}300$	$5.226 {\pm} 0.004$	
	Van Grootel et al. (2010a)	-2.83	0.731	$32630{\pm}600$	5.276	
		-2.71	0.769	$32630{\pm}600$	5.278	
	Randall et al. (2009)	$-4.39{\pm}0.10$	$0.485 {\pm} 0.011$	$34805{\pm}230$	$5.788 {\pm} 0.004$	EC09582 - 1137
	Van Grootel et al. (2010b)	$-2.55 {\pm} 0.07$	$0.496{\pm}0.002$	$27730{\pm}270$	$5.520 {\pm} 0.030$	KPD $1943 + 4058$
	Van Grootel et al. (2010c)	$-2.42{\pm}0.07$	$0.471 {\pm} 0.002$	$26485 {\pm} 195$	$5.450 {\pm} 0.034$	KPD 0629-0016
	Charpinet et al. (2011)	-2.30 ± 0.05 -2.35 ± 0.05	0.463 ± 0.009 0.452 \pm 0.012	25395 ± 225 25395 ± 225	5.489 ± 0.033 5 499 \pm 0.049	KIC02697388

13 p-mode pulsators

3 g-mode pulsators

PG1336-018 : a Rosetta stone for the seismology of p-mode sdB pulsators

Properties :

sdB + dM eclipsing close binary (Porb = 2.4244 h)

25 pulsation periods in the range 96 – 205 s (Whole Earth Telescope campaign)

Complications :

Likely a fairly fast rotator phase-locked with the orbital period of the close binary system : Prot = Porb = 8727.78 seconds (2.4244 h)

Fairly large rotational splitting expected (~ 114 $\mu Hz)$

Effects of rotation had to be considered in the optimisation procedure. First order solid-body rotation assumed for the search

Ultracam/VLT data Figure from Vuckovic et al. 2007, A&A, 471, 605

 $\sigma_{klm} = \sigma_{kl0} - m\Omega(1 - C_{kl})$

PG1336-018 : a Rosetta stone for the seismology of p-mode sdB pulsators

PG1336-018 : a Rosetta stone for the seismology of p-mode sdB pulsators

Charpinet et al. 2008, A&A, 489, 377

Table 1. Structural parameters of PG 1336-018 ($y = 13.450 \pm 0.093$; Wesemael et al. 1992) derived from asteroseismology and compared with the independent analysis of the orbital light curve by Vuckovic et al. 2007.

Asteroseismic	c analysis	Specti	roscopy
Quantity	Estimated Value	BG9	Kilkenny et al. (1998)
$T_{\rm eff}$ (K)	$32,740 \pm 400$	$32,560 \pm 400$	$33,000 \pm 1000$
$\log g$	5.739 ± 0.002	5.79 ± 0.06	5.7 ± 0.1
M_*/M_{\odot}	0.459 ± 0.005		
$\log(M_{ m env}/M_*)$	-4.54 ± 0.07		
$R/R_{\odot}~(M_{*},g)$	0.151 ± 0.001		
$L/L_{\odot}~(T_{ m eff},R)$	23.3 ± 1.5		
$M_V\left(g,T_{ m eff},M_* ight)$	4.49 ± 0.04		
$d(V, M_V)$ (pc)	619 ± 38		
$P_{ m rot}~({ m h})^{\dagger}$	2.42438		
$V_{ m eq}\left(P_{ m rot},R ight)\left(m km/s ight)$	75.9 ± 0.6		
t account didantical to	41		the surface of IZ

 † assumed identical to the orbital period (value taken from the ephemeris of K

[‡] deemed unlikely and thus rejected by Vuckovic et al. (2007) due to the high

PG1336-018 : a Rosetta stone for the seismology of p-mode sdB pulsators

Charpinet et al. 2008, A&A, 489, 377

Table 1. Structural parameters of PG 1336-018 ($y = 13.450 \pm 0.093$; Wesemael et al. 1992) derived from asteroseismology and compared with the independent analysis of the orbital light curve by Vuckovic et al. 2007.

Asteroseismi	c analysis	Spectr	roscopy	Vuckovic et al. (2007)		
Quantity	Estimated Value	BG9	Kilkenny et al.	Model I	Model II	Model III [‡]
			(1998)			
$T_{\rm eff}$ (K)	$32,740 \pm 400$	$32,560 \pm 400$	$33,000 \pm 1000$			
$\log g$	5.739 ± 0.002	5.79 ± 0.06	5.7 ± 0.1	5.74 ± 0.05	5.77 ± 0.06	5.79 ± 0.07
M_*/M_{\odot}	0.459 ± 0.005			0.389 ± 0.005	0.466 ± 0.006	0.530 ± 0.007
$\log(M_{ m env}/M_{*})$	-4.54 ± 0.07					
$R/R_{\odot}~(M_{*},g)$	0.151 ± 0.001			0.14 ± 0.01	0.15 ± 0.01	0.15 ± 0.01
$L/L_{\odot}~(T_{ m eff},R)$	23.3 ± 1.5					
$M_V\left(g,T_{\mathrm{eff}},M_* ight)$	4.49 ± 0.04				\checkmark	
$d(V, M_V)$ (pc)	619 ± 38			Independen	t values from ec	lipsing binary
				lightcurve m	nodeling	
$P_{ m rot}$ (h) †	2.42438			0	0	
$V_{ m eq}\left(P_{ m rot},R ight)\left(m km/s ight)$	75.9 ± 0.6					

[†] assumed identical to the orbital period (value taken from the ephemeris of Kilkenny et al. 2000).

[‡] deemed unlikely and thus rejected by Vuckovic et al. (2007) due to the high mass of the primary.

PG1336-018 : a Rosetta stone for the seismology of p-mode sdB pulsators

Charpinet et al. 2008, A&A, 489, 377

Table 1. Structural parameters of PG 1336-018 ($y = 13.450 \pm 0.093$; Wesemael et al. 1992) derived from asteroseismology and compared with the independent analysis of the orbital light curve by Vuckovic et al. 2007.

Asteroseismi	c analysis	Spectr	roscopy	Vu	ckovic et al. (2007)	
Quantity	Estimated Value	BG9	Kilkenny et al.	Model J	Model II	Model III [‡]
			(1998)			
$T_{\rm eff}$ (K)	$32,740 \pm 400$	$32,560 \pm 400$	$33,000 \pm 1000$			
$\log g$	5.739 ± 0.002	5.79 ± 0.06	5.7 ± 0.1	5.74 ± 0.05	5.77 ± 0.06	5.79 ± 0.07
M_*/M_{\odot}	0.459 ± 0.005			0.389 4 0.005	0.466 ± 0.006	$0.530 \bigstar 0.007$
$\log(M_{ m env}/M_*)$	-4.54 ± 0.07					
$R/R_{\odot}~(M_{*},g)$	0.151 ± 0.001			0.4 ± 0.01	0.15 ± 0.01	0.15 ± 0.01
L/L_{\odot} $(T_{\rm eff}, R)$	23.3 ± 1.5					• •
$M_V\left(g,T_{\mathrm{eff}},M_* ight)$	4.49 ± 0.04					
$d(V, M_V)$ (pc)	619 ± 38			Independen	it values from ec	lipsing binary
				lightcurve n	nodeling	
$P_{ m rot}$ (h) †	2.42438			0	0	
$V_{\rm eq}$ $(P_{\rm rot}, R)$ (km/s)	75.9 ± 0.6					

[†] assumed identical to the orbital period (value taken from the ephemeris of Kilkenny et al. 2000).

[‡] deemed unlikely and thus rejected by Vuckovic et al. (2007) due to the high mass of the primary.

Convergence of 3 techniques on the derived values of log g, M, and R

PG1336-018 : a Rosetta stone for the seismology of p-mode sdB pulsators

Internal rotation

Checking solid-body rotation with a two-zone model :

Psurf = Porb = 8727.78 s (sync at the surface)

Pcore varied between 1000 and 19000 s

Rs/R*, the transition between the two zones, s is varied between 0.2 and 1.0

A vertical valley of best fit solutions indicating solid internal rotation

~ 50 % of the star (in radius) is probed

Similar results for Feige 48 (Van Grootel et al. 2008)

Charpinet et al. 2008, A&A, 489, 377

October 27, 2011

Space observations: a decisive step for g-mode seismology of sdB stars

Probing the core structure with g-modes

Probing the core structure with g-modes

Probing the core structure with g-modes

October 27, 2011

The Impact of Asteroseismology across Stellar Astrophysics (Santa Barbara/USA)

Adiabatic asteroseismology Probing the core structure with g-modes

Main outcome : structural and core parameters

Table 6. Structural and core parameters inferred for KIC02697388 for the two solutions

Tab 1 Core Parameters Inferre	le 3 d for KPD 1943+4058 (Al	ll the Quoted				Quantity	solution 1	solut
Uncertainties are the	Formal Fitting Ones)					$T_{\rm eff}$ (K)	25395	\pm 227 [†]
Quantity	Estimated Value						25622^{+490}_{-350}	[‡] 2555
$T_{\rm eff}$ (K)	27730 ± 270^{a}							÷
	28050 ± 470^{b}	Table 2. Structural and core para	ameters in	ferred	l for KPD 0629–0016	log g	5.500 ±	= 0.031'
log g	5.552 ± 0.041^{a}						$5.489^{+0.029}_{-0.036}$	[‡] 5.499]
	5.52 ± 0.03^{b}	Quantity	Esti	mate	1 Value			
M_*/M_{\odot}	$0.496~\pm~0.002$	$T_{\text{eff}}(\mathbf{K})$	26484	+	196 (1)		0.010	
$\log(M_{\rm env}/M_*)$	-2.55 ± 0.07	-en ()	26290	+	530 ⁽²⁾	M_*/M_{\odot}	$0.463^{+0.010}_{-0.008}$	0.452
$\log(1-M_{\rm cc}/M_*)$	-0.37 ± 0.01	log g	5 472		0.027(1)	$\log(M_{\rm env}/M_*)$	$-2.30^{+0.03}_{-0.06}$	-2.35
$M_{ m cc}/M_{\odot}$	$0.28~\pm~0.01$	logg	5.475		0.027 (2)	$\log(1 - M_{\rm core}/M_*)$	$-0.39^{+0.01}_{-0.02}$	-0.30
$X_{\text{core}}(C+O)$	0.261 ± 0.008	14 / 14	5.450	±	0.034	$M_{\rm corr}/M_{\odot}$	$0.274^{+0.008}_{-0.02}$	0.225
Age (Myr)	$18.4 \pm 1.0^{\circ}$	M_*/M_{\odot}	0.4/1	±	0.002	$X = (C \pm O)$	$0.18^{+0.06}$	0.22
$R/R_{\odot}~(M_*,g)$	0.203 ± 0.007	$\log(M_{\rm env}/M_*)$	-2.42	Т 	0.07	$\Lambda_{\rm core}(C+O)$	0.18 - 0.03	0.27
L/L_{\odot} $(T_{\rm eff}, R)$	22.9 ± 3.1	$M = \frac{M_{\text{core}}}{M_{*}}$	-0.27		0.01			
$M_V(g, T_{\rm eff}, M_*)$	4.21 ± 0.11	$\frac{M_{\text{core}}}{M_{\odot}}$	0.22		0.01	Age (Myr)*	40.8 ± 1.0	53.0
E(B-V)	0.094 ± 0.017	$A_{\rm core}(C+O)$	0.41	-	0.01	P/P (M a)	0.202 ± 0.009	0 108
$d(V, M_V)$ (pc)	1180 ± 95		12 6		1 0 (3)	K/K_{\odot} (M_*, g)	$0.205_{-0.007}$	0.198
		Age (Myr) $\frac{P}{P}$ (M a)	42.0	± ⊥	0.000	L/L_{\odot} ($T_{\rm eff}, R$)	$16.0^{+1.9}_{-1.4}$	15.
Notes.		K/K_{\odot} (M_{*}, g) L/L_{\odot} (T_{*}, R)	10.214	工 十	3.2			
^a From spectroscopy.		L/L_{\odot} ($T_{\rm eff}, K$) $M_{\rm H}$ (g, T, m, M)	1 2 3		0.13		4 204 + 0 122	4.450
^b From asteroseismology	Ι.	F(B-V)	0.128		0.023	$M_V (g, I_{\text{eff}}, M_*)$	4.394 ± 0.133	$4.450 \pm$
^c Since zero-age EHB.		L(B-V) $d(V, M_{\rm M})$ (pc)	1100		115		15.234 ± 0.021	
		(1) From spectroscopy (2)	Erom aster		logy	B - V F(B - V)	-0.104 0.057 \pm 0.030	± 0.050
		⁽³⁾ Since zero-age FHB	i ioni astero	5015HI	1057	E(D-V)	0.037 ± 0.030 0.182 + 0.096	$0.030 \pm$ 0.179 +
		Since Zero age LIID				$d(V, M_{V}, A_{V})$ (nc)	1355 ± 144	1321

* from asteroseismology

[†] from spectroscopy
 ^{*} from the zero age extreme horizontal branch (ZAEHB)

Adiabatic asteroseismology Probing the core structure with g-modes

Main outcome : structural and core parameters

Table 6. Structural and core parameters inferred for KIC02697388 for the two solutions

T 11 A					Qu	antity	Estimate	ed values
Table 3 ad Core Parameters Inferred for	r KPD 1043±4058 (A1	1 the Quoted					solution 1	solution 2
Uncertainties are the For	mal Fitting Ones)	The Quoted						
					$T_{\rm eff}$	(K)	25395	$\pm 227^{\dagger}$
Quantity	Estimated Value						$+25622_{-350}^{+490}$	$+25555^{+480}_{-560}$
Ceff (K)	27730 ± 270^{a}						5 500 1	0.021
	28050 ± 470^{b}	Table 2. Structural and core para	ameters inferre	d for KPD 0629	-0016 log	8	$5.500 \pm$	± 0.031
og g	5.552 ± 0.041^{a}						$+5.489_{-0.036}^{+0.029}$	$*5.499_{-0.051}$
	5.52 ± 0.03^{b}	Quantity	Estimate	ed Value				
$_{*}/M_{\odot}$	0.496 ± 0.002	$T_{\rm eff}$ (K)	$26484 \pm$	196 ⁽¹⁾		134	0.462 ± 0.010	0.450+0.018
$(M_{\rm env}/M_*)$	-2.55 ± 0.07		26290 ±	530 (2)	M_{*}	$/M_{\odot}$	$0.463^{+0.010}_{-0.008}$	$0.452^{+0.010}_{-0.005}$
$\log(1 - M_{\rm cc}/M_*)$	-0.37 ± 0.01	logg	5.473 +	0.027 (1)	log	$(M_{\rm env}/M_*)$	$-2.30^{+0.05}_{-0.06}$	$-2.35^{+0.07}_{-0.02}$
$M_{\rm cc}/M_{\odot}$	0.28 ± 0.01		5 4 5 0 +	$0.034^{(2)}$	log	$(1 - M_{\rm core}/M_*)$	$-0.39\substack{+0.01\\-0.02}$	$-0.30\substack{+0.03\\-0.01}$
core(C+O)	0.261 ± 0.008	M_{\star}/M_{\odot}	0.471 +	0.002	$M_{\rm co}$	$_{\rm ore}/M_{\odot}$	$0.274^{+0.008}_{-0.010}$	$0.225^{+0.011}_{-0.016}$
.ge (Myr)	$18.4 \pm 1.0^{\circ}$	$\log(M_{\rm env}/M_{*})$	$-2.42 \pm$	0.07		re(C+O)	$0.18 \substack{+0.06\\-0.03}$	$0.27^{+0.07}_{-0.12}$
$C/R_{\odot}(M_*,g)$	0.203 ± 0.007	$\log(1 - M_{\text{core}}/M_{*})$	-0.27 \pm	0.01		,	-0.05	-0.12
$L_{\odot}(I_{\rm eff}, R)$	22.9 ± 3.1	$M_{\rm core}/M_{\odot}$	0.22 \pm	0.01				
$V(g, I_{\rm eff}, M_*)$	4.21 ± 0.11	$X_{core}(C+O)$	0.41 \pm	0.01	Ag	e (Myr)*	40.8 ± 1.0	53.9 ± 1.0
-V) M (no)	0.094 ± 0.017				R/I	$R_{\odot}(M_*,g)$	$0.203^{+0.009}_{-0.007}$	$0.198^{+0.013}_{-0.011}$
(V, MV) (pc)	1100 ± 95	Age (Myr)	42.6 \pm	$1.0^{(3)}$	L/I	L_{\odot} $(T_{\rm eff}, R)$	$16.0^{+1.9}_{-1.4}$	$15.1^{+2.3}_{-2.0}$
latas		R/R_{\odot} (M_*, g)	$0.214 \pm$	0.009	, í	0 • • • •	-1.4	-2.0
From spectroscopy		L/L_{\odot} ($T_{\rm eff}, R$)	$19.7 \pm$	3.2				
From asteroseismology		$M_V(g, T_{\rm eff}, M_*)$	$4.23 \pm$	0.13	M_V	$(g, T_{\rm eff}, M_*)$	4.394 ± 0.133	4.450 ± 0.187
Since zero-age FHB		E(B-V)	$0.128 \pm$	0.023	V		15.234	± 0.021
shiee zero uge zinz.		$\frac{d(V, M_V)(\text{pc})}{W}$	$1190 \pm$	115	B -	- V	-0.164	± 0.030
		⁽¹⁾ From spectroscopy; ⁽⁴⁾	From asteroseisn	ology	E(I)	B-V)	0.057 ± 0.030	0.056 ± 0.030
		⁽³⁾ Since zero-age EHB			A_V		0.182 ± 0.096	0.179 ± 0.096
					<i>a</i> ($V, M_V, A_V)$ (pc)	1355 ± 144	1321 ± 173
Coronoron	notoro. Mire	ad agree mare auton	dad (bu	E007 in		am astanosaismal	0.011	
Core paran		eu core more exten	ueu (by	~ 30% III	* II † c.	om asteroseismoi	ogy	
– mass) than	expected f	rom standard sdB e	evolutio	narv	* fr	on the zero age e	extreme horizontal	branch (7 AFHR)
					11	on the zero age c	Autome nonzontal	Drahen (ZAEND)
models (M	$C \sim 0.15$ MIS	un) → additional so	urces of	mixing				

Adiabatic asteroseismology Mode identification

Identification of the observed modes

Periods associated to $\ell = 1, 2$, and 4 g-modes

Radial order k ~ 10-65, up to the g-mode cutoff period (which is ℓ -dependent)

Seismic solution for KIC02697388 (Charpinet et al. 2011)

How well do the best-fit models fit?

KPD1943+4058 (Van Grootel et al. 2010a)	KPD0629-0016 (Van Grootel et al. 2010b)	KIC02697388 (Charpinet et al. 2011)
18 modes	17 modes	43 modes
$\overline{ \Delta P/P } \sim 0.22 \%$	$\overline{ \Delta P/P } \sim 0.23 \%$	<mark>ΔΡ/Ρ </mark> ~ 0.35 %
$\overline{ \Delta P } \sim 7.8 \text{ s}$	$\overline{ \Delta P } \sim 11.8 \text{ s}$	$\overline{ \Delta P } \sim 20.9 \text{ s}$
$\overline{ \Delta v } \sim 0.697 \mu \text{Hz}$	$\overline{ \Delta v } \sim 0.530 \mu \text{Hz}$	$\overline{ \Delta v } \sim 0.811 \mu Hz$

Formal resolution : 0.43 μ Hz (27 day runs) and 0.042 μ Hz (after 9 month) Accuracy on measured frequencies : ~ 1/10 of the formal resolution (resolved modes)

- → Models provide « close » fits to the observations but are not yet able to match the frequencies simultaneously at the precision of the observations.
- → The next challenge is to identify the origin(s) of these remaining discrepancies and correct the model's structure accordingly

Summary & Prospects

Precise determination of the stellar main parameters

- \rightarrow An essential step for detailed investigations of individual objects
- \rightarrow Important for understanding the evolution history of sdB stars

Probing the internal stratification

- → Mass of the H-rich envelope (remnant of the former red giant envelope)
- \rightarrow Extent of the internal mixed core (convection + extra mixing)
- → Detecting He-flash signatures?

Internal rotation of sdB stars (not really discussed here)

- \rightarrow In binaries, constraints on tidal synchronization
- → Core rotation from g-modes (Kepler data should reveal more about this soon) They seem to be very slow rotating compact stars!

Nonadiabatic asteroseismology (not really discussed here):

- \rightarrow Radiative levitation + competing mixing (e.g., thermohaline conv.)
- \rightarrow Atomic physics (opacities): Fe, Ni