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  Overturning convection is a linear instability of stratified fluids with 
“top-heavy” density profiles, and occurs whenever  
◦  If density depends on temperature only, then we have thermal 

convection for fluids heated at the bottom.  

◦  This is a VERY efficient kind of convection. 

Buoyancy Force 

Instability 
criterion: 
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ρ ∝−T⇒
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  Overturning convection is a linear instability of stratified fluids with 
“top-heavy” density profiles, and occurs whenever  
◦  Fluids hotter at the top are stable against overturning convection.  

Buoyancy Force 
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ρz > 0



Aside: In the previous argument, the system is assumed 
incompressible. In most astrophysical systems, it is not. 

The correct criterion for instability is                         

which translates, in terms of temperature, into the Schwarzchild 
criterion:   
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  Overturning convection is a linear instability of stratified fluids with 
“top-heavy” density profiles, and occurs whenever  
◦  If density depends on composition only, then we have overturning 

convection for fluids with top-heavy composition. 

◦  This is a VERY efficient kind of convection 

◦  Fluids with bottom-heavy composition are stable 

Buoyancy Force 

Instability 
criterion: 
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ρ = βS⇒
ρz > 0⇔ Sz > 0
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ρz > 0



  In compositionally stably stratified fluids 

displaced blobs of fluid oscillate with the buoyancy frequency. 
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T z = 0, S z < 0 and ρ z < 0



  What happens when both types of stratification compete?  
◦  (Stable temperature gradient with unstable composition?) 

◦  Unstable temperature gradient with stable composition?  

Instability  
criterion ? 



The answer is superficially simple: 
  With 
the new criterion for instability for overturning convection is 

  For compressible fluids, the equivalent criterion for instability is 
called the Ledoux criterion   
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ρ = −αT + βS⇒ ρz = −αTz + βSz
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ρz > 0   →   −αTz + βSz > 0
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  The presence of even a small (but unstable) temperature gradient 
can cause a double-diffusive instability instability in a system that is 
stable to overturning convection.  
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T z,  S z < 0 and ρ z < 0



  Double-diffusive stability depends principally on the non-
dimensional inverse density ratio: 
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Overturning convection 
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  Double-diffusive staircases 
are often observed in the  
polar ocean 
◦  Layers are typically 10s of 

meters deep 

◦  Can have large horizontal 
extent, and persist for 
months or more 

◦  Layered convection also 
seen in laboratory 
experiments. 

◦  Transport through 
staircase larger than 
through standard DD 
convection 

Timmermans et al. 2010 
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Goal: to study phenomenon in astrophysical systems.  
  Linear theory  eddy scale much, much smaller than system scale. 
  Model considered here: 
◦  Assume background temperature and concentration profiles are 

linear (constant gradients                    ) 

◦  Assume that all perturbations are triply-periodic in domain (Lx,Ly,Lz): 
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  Governing non-dimensional equations: 
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  Stephan Stellmach 
developed high-performance 
3D code to study double-
diffusive convection 

  Code solves non-
dimensional equations 
described earlier, for input 
parameters:  

  Code is pseudo-spectral, 
triply periodic, DNS.  
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Example of fingering 
convection in salt water. 



  In astrophysical systems, typical parameters Pr and τ are  <<1 
because thermal diffusion increased by photon transport while 
other diffusion coefficients are not. 
◦  Planetary interiors:  

◦  Stellar interiors: 

  The stellar parameter regime is not achievable numerically. 
Planetary regime on the other hand is accessible to DNS. 

  We ran a series of numerical experiments with decreasing Pr, τ 
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Pr, τ ≈10−6
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Pr, τ ≈10−2

Set  1 2 3 4 5 6 7 

Pr 1/3 1/10 1/30 1/100 1/3 1/10 1/3 

τ 1/3 1/10 1/30 1/100 1/10 1/3 1/30 
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Sample results for double-diffusive convection 
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Sample results for double-diffusive convection: two possible outcomes 
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Three fundamental questions: 

  Can we predict when staircases form/don’t form?  

  Can we understand what controls transport through a staircase as 
well as the dynamics of mergers? 

  Can we understand what controls transport in the absence of 
staircases?  
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  Emergence of large-scale structures in double-diffusive 
convection can be understood using “mean-field” theory  
◦  Long tradition of this approach for fingering (thermohaline) 

convection in the ocean: Stern & Turner, 1969;  Walsh & Ruddick,
1995; Stern et al. 2001; Radko 2003. … 

  Mean-field theory (Radko 2003, Rosenblum et al. 2011) 
◦  Assume that emerging staircase scale >> basic instability scale 

◦  Spatially average governing equations over small scales 

◦  Use empirically motivated closure to model turbulent transport by 
the small-scales 

◦  Study the resulting evolution of the large-scale fields 



  Physical interpretation of mean-field instability: positive feedback 
between large-scale temperature/composition perturbation and 
induced fluxes. 

  Different feedback loops can lead to different “mean-field” 
instabilities, e.g. layering instability, large-scale gravity wave 
excitation, intrusive instability. 

Large-scale 
temperature, salinity 

perturbations 

Perturbations in local 
density ratio  

Perturbations in 
turbulent fluxes 



Layering instability:  
  Modes of instability are 

horizontally invariant, 
vertically sinusoidal 
perturbations in temperature/
composition/density.  

  The mode overturns into a 
staircase when amplitude is 
large enough. 

  A necessary condition for the 
layering instability is that flux 
ratio     should be a 
decreasing function of density 
ratio      : Radko’sγ-
instability.  

€ 

γ tot
−1 =

Total buoy. flux from composition
Total buoy. flux from heat

     =
−κµµz+ < wµ >

−κTTz+ < wT >

€ 

R0
−1

€ 

γ tot
−1

€ 

Pr =
ν
κT

,    τ =
κµ

κT

€ 

R0
−1 =

βµ0z
α T0z −T0z

ad



  Since the layering instability occurs only when       is a 
decreasing function of       , knowing when staircases are 
expected boils down to measuring the function 
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Mirouh et al. in prep. 
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  We find that layers indeed form in regions with              
decreasing. Furthermore, the layer growth rate matches 
theory very well.   

  Problem: how do we apply this idea to stellar interiors, 
which are in a parameter regime inaccessible to 
simulations?  
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γ tot
−1 (Rρ
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Mirouh et al. in prep. 
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  Solution: find a model to predict              from linear theory (!).  
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γ tot
−1 (Rρ

−1)

Mirouh et al. in prep. 
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  Predictions for stellar interiors:  

Layers 
likely 

Strong  
mixing 
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Pr =10−6

τ =10−7

No spontaneous 
layer formation 

Weak mixing 
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•  Staircase formation and each subsequent merger increases 
turbulent transport for both heat and composition. 

Rosenblum et al. 2011. 
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NuT =
Total heat flux

Diffusive heat flux



•  The heat transport properties in the layered convection case is 
“well” explained with Rayleigh-Benard scaling laws.  

•  The mixing rate depends mostly on layer height! 

Rosenblum et al 2011,  + new results in prep. 
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Preliminary!  
To be verified 
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NuT =
Total heat flux

Diffusive heat flux



€ 

γ tot
−1 ≈ 0.6 − 0.8

•  The compositional transport properties in the layered convection 
case seems to be “well” explained assuming that a more-or-less 
constant order-unity flux ratio 

Rosenblum et al 2011,  + new results in prep. 
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Preliminary!  
To be verified 
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γ tot
−1 ∝τ−1/ 2

•  This is in contrast with previous predictions for double-diffusive 
convection, which assumed that 

•  This difference stems from the very turbulent nature of transport 
across layers in the low Prandtl number vs diffusive transport at 
higher Prandtl number. 

Rosenblum et al 2011,  + new results in prep. 
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•  In all simulations performed to date (except one), layers merge 
until only one remains in the box. However, what if the box was 
larger?  

•  OPEN QUESTION: what is the thickness of layers in real 
stellar/planetary interiors?  

Rosenblum et al 2011,  + new results in prep. 
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•  Semi-convection occurs for  

  2 possible outcomes: homogeneous or layered semi-convection 
   Criterion for layer formation depends on               where 

  Numerical experiments reveal that 

  Critical density ratio for spontaneous layer formation can be 
estimated semi-analytically.  
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−1 < RL

−1 :   efficient layered semi- convection
R0
−1 > RL

−1 :   very inefficient homogeneous semi- convection
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•  Transport in layered convection depends on layer height with: 
  Heat transport scaling as Rayleigh Benard convection 

  Compositional buoy. transport of same order as heat buoy. Transport 

  What controls layer height remains to be determined… 
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Overturning convection 
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