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Extreme Horizontal Branch stars"
(Heber 1986) with:"
  He-burning core ~0.5 M"
  very thin H-envelope <0.02 M"

sdBs/EHBs are found in:"
  the field: mostly in binaries"
  globular clusters: mostly single"
  elliptical galaxies causing UV 

upturn "

All populations can be explained "
with binary formation channels"
(Han et al. 2003, 2007, 2008)"

<------- sdB	



What are sdB stars?"



sdB variables:"
  V361 Hya stars (Kilkenny et al. 97):"

•  short periods (100-250 s) "
•  p-mode pulsations"

  V1093 Her stars (Green et al. 03):"
•  long periods (30 min-2 hr)"
•  g-mode pulsations"

  Both driven by opacity (κ)-
mechanism acting in enhanced 
Iron Opacity Bump caused by 
atomic diffusion (Charpinet et al. 98, 
Fontaine et al. 03)"

Figure from Christensen-Dalsgaard (2004)	



Effects of diffusion:  
pulsations"

V361 Hya	



V1093 Her	





  sdB stars are chemically peculiar (e.g. Geier et al 2008):"
•  He is subsolar, n(He)/n(H)=10-4-10-1, but more

 abundant than predicted by diffusion theory"
•  Fe is near solar for all populations"
•  Lighter metals are depleted            "
•  Heavier metals are enriched"

  abundance anomalies caused by:"
atomic diffusion + mass-loss "

or"
atomic diffusion + turbulence ?"

wide spread	



Effects of diffusion:  
abundance anomalies"



  Diffusion during evolution on EHB"

Effects of diffusion:  
on chemical gradients"

Hu et al. (2010)	





Effects of diffusion:  
on mode trapping" Hu et al. in prep.	
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Methodology 

Construct evolutionary sdB
 models with STARS
 (Eggleton 1971)	



Compute non-adiabatic
 stellar oscillations with
 MAD (Dupret 2001)	
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Diffusion ingredients:	


• grad’s from Opacity Project	


• Burgers (1969) diffusion equations	


• Thoul et al (1994) diffusion routine
 updated to include:	



• Radiative forces	


• Partial ionization	


• Paquette et al (1986) diffusion
 coefficients 	





  Thermal diffusion, concentration diffusion, gravitational
 settling, and radiative levitation"

  Start with Boltzmann transport equation:"
"for evolution of distribution function fi(r,v,t) of species i"

  Two formalisms giving approximate solutions of the
 Boltzmann equation:"
•  Chapman-Enskog theory (Chapman&Cowling 1970)"

•  Burgers theory (Burgers 1969)"

Methodology 
diffusion formalism"
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  Thermal diffusion, concentration diffusion, gravitational
 settling, and radiative levitation"

  Start with Boltzmann transport equation:"
"for evolution of distribution function fi(r,v,t) of species i"

  Two formalisms giving approximate solutions of the
 Boltzmann equation:"
•  Chapman-Enskog theory (Chapman&Cowling 1970)"

•  Burgers theory (Burgers 1969) more convenient for
 multicomponent fluid"
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Methodology 
Burgers (1969)      "

Burgersʼ diffusion"
equations:"

Resistance coefficients"
(Kij, zij, zʼij, zʼʼij) derived from
 a screened Coulomb
 potential (Paquette et al.
 1986)"



  Atomic data and codes from the Opacity Project
 (Badnell et al. 2005, Seaton 2005)"

  Integration over 10 000 frequency points u"
  Compute gradʼs and κR at each meshpoint of star and

 each timestep of evolution, thus fully consistent
 taking into account all composition changes"

Methodology 
computation of gradʼs"
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Results 
gradʼs for a typical sdB model"

M* = 0.46 M, Menv = 10-4 M, Teff = 30,000 K"
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Results	


Abundance profiles due to diffusion (no mass-loss/turbulence)	



Hu et al. (2011)	





Results 
no mass-loss/turbulence"

Pulsation periods for l ≤ 2:	



Surface abundances:	





Results 
no mass-loss/turbulence"

Pulsation periods for l ≤ 2:	


•  mode excitation for l ≤ 2 up to
 Teff (blue-edge) ~ 29 kK, 	


•  period ranges of unstable
 modes ~consistent with
 observations	


 solves g-mode instability
 problem for sdB stars	



Surface abundances:	





Results 
no mass-loss/turbulence"

Pulsation periods for l ≤ 2:	


•  mode excitation for l ≤ 2 up to
 Teff (blue-edge) ~ 29 kK, 	


•  period ranges of unstable
 modes ~consistent with
 observations	


 solves g-mode instability
 problem for sdB stars	



Surface abundances:	


•  He settles too quickly; below
 10-4 within 0.01% of EHB
 lifetime	





Processes competing with diffusion:"
Mass loss (Fontaine&Chayer 1997, Unglaub&Bues 2001)"

 or "
turbulent mixing (Michaud et al 2001)?"



Results 
mass-loss"

"Estimation:"
  Takes ~104 yr to build up Fe/Ni reservoir"
  Reservoir goes down to M* - Mr ≈ 10-10 M "
 No driving of pulsations if in 104 yr more than " 

 10-10 M is removed, i.e. if Mdot > 10-14 M/yr"
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Results 
mass-loss"

Hu et al. (2011)	





Results 
turbulence"
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  Thermohaline convection (or rotation, convective
 overshoot, …)"

  In 1D stellar evolution, thermohaline mxing is described
 as a diffusion process "

  What is the correct diffusion coefficient?"
•  Ulrich (1972) uses finger geometry"
•  Kippenhahn et al (1980) uses blob geometry"
•  3d-hydro simulations (Traxler et al 2011) agree better

 with Kippenhahn"
  We follow Kippenhahn et al (1980) but including gradʼs."

What causes turbulent mixing?"



Kippenhahn (1974)	





with	



Hu et al. in prep.	





with	



Hu et al. in prep.	



age ≈ 106 yr on EHB 	







Conclusions"

  Including diffusion in sdB models is essential"
  However, much is unknown about competing

 processes, i.e. mass loss or turbulence"
  Observations of pulsations give strong constraints on

 these poorly understood processes"


