## The Impact of Asteroseismology across Stellar Astrophysics KITP October 2011



The Empirical Mass Distribution of Hot B Subdwarfs derived by asteroseismology and other means

Valerie Van Grootel<sup>(1)</sup>

G. Fontaine<sup>(2)</sup>, P. Brassard<sup>(2)</sup>, S. Charpinet<sup>(3)</sup>, E.M. Green<sup>(4)</sup>, S.K. Randall<sup>(5)</sup>

- (1) Institut d'Astrophysique, Université de Liège, Belgium
- (2) Université de Montréal, Canada
- (3) IRAP, Toulouse, France
- (4) University of Arizona, USA
- (5) European Southern Observatory, Germany

Hot (T<sub>eff</sub> = 20 000 - 40 000 K) and compact (log g = 5.2 - 6.2) stars belonging to Extreme Horizontal Branch (EHB)

> Myr) on EHB, then evolve as low-mass white dwal stars reside in binary systems, generally in close orbit (

#### Two classes of multi-periodic sdB pulsators

- 80 - 600 s),  $A \le 1\%$ , p-modes (envelope)

45 min - 2 h),  $A \le 0.1\%$ , g-modes (core). Space observations required !





• Single star evolution (enhanced mass loss at tip of RGB) 0.40 - 0.43  $\leq$  M\_/Ms  $\leq$  0.52 (Dorman et a

Binary star evolution (Han et al. 2002, 20

elope ejection (CE), stable mass transfer by Roci He-white dwarf mergers





 $\bigcirc$ 

Search the star model(s) whose theoretical periods best fit all the observed ones, in order to minimize

$$S^2 = \sum \frac{1}{\sigma} (P_{\rm obs} - P_{\rm th})^2$$

Juding detailed envelope microscopic diffusion (not

tation codes (based on *Genetic Algorithms*) are used ptential asteroseismic solutions

#### > Example: PG 1336-018, pulsating sdB + dM eclipsing binary



 $\label{eq:modeling} \begin{array}{l} \mbox{(Vuckovic et al. 2007):} \\ 89 \pm 0.005 \ \mbox{M}_{s} \ \mbox{et } R = 0.14 \pm 0.01 \ \mbox{R}_{s} \\ \mbox{II.} & \mbox{M}_{tot} = 0.466 \pm 0.006 \ \mbox{M}_{s} \ \mbox{et } R = 0.15 \pm 0.01 \ \mbox{R}_{s} \\ & \mbox{-} 0.007 \ \mbox{M}_{s} \ \mbox{et } R = 0.15 \pm 0.01 \ \mbox{R}_{s} \end{array}$ 

 $M_{tot} = 0.459 \pm 0.005 \text{ M}_{s} \text{ et } \text{R} = 0.151 \pm 0.001 \text{ R}_{s}$ 

 $\Rightarrow$  Our asteroseismic method is sound and free of significant systematic effects

|  | roo |  | $\mathbf{c}$ |  |
|--|-----|--|--------------|--|
|  |     |  |              |  |
|  |     |  |              |  |
|  |     |  |              |  |

| Name          | $\log g (\mathrm{cm}\mathrm{s}^{-2})$ | $T_{\rm eff}$ (K) | $M(M_{\odot})$    | $\log M_{\rm env}/M$ | References                  |
|---------------|---------------------------------------|-------------------|-------------------|----------------------|-----------------------------|
| PG 0014+067   | 5.780±0.008                           | 33550±380         | 0.490±0.019       | -4.31±0.22           | Brassard et al. (2001)      |
|               | $5.775 \pm 0.009$                     | 34130±370         | $0.477 \pm 0.024$ | $-4.32\pm0.23$       | Charpinet et al. (2005a)    |
|               | 5.772                                 | 34130±370         | 0.478             | -4.13                | Brassard & Fontaine (2008)  |
| PG 1047+003   | $5.800 \pm 0.006$                     | 33150±200         | $0.490 \pm 0.014$ | $-3.72\pm0.11$       | Charpinet et al. (2003)     |
| PG 1219+534   | $5.807 \pm 0.006$                     | 33600±370         | $0.457 \pm 0.012$ | $-4.25 \pm 0.15$     | Charpinet et al. (2005b)    |
| Feige 48      | $5.437 \pm 0.006$                     | $29580 \pm 370$   | $0.460 \pm 0.008$ | $-2.97 \pm 0.09$     | Charpinet et al. (2005c)    |
|               | $5.462 \pm 0.006$                     | $29580 \pm 370$   | $0.519 \pm 0.009$ | $-2.52 \pm 0.06$     | Van Grootel et al. (2008a)  |
| EC05217-3914  | 5.730                                 | 32000             | 0.490             | -3.00                | Billères & Fontaine (2005)  |
| PG 1325+101   | 5.811±0.004                           | $35050 \pm 220$   | $0.499 \pm 0.011$ | $-4.18 \pm 0.10$     | Charpinet et al. (2006a)    |
| PG 0048+092   | 5.711±0.010                           | 33300±1700        | $0.447 \pm 0.027$ | $-4.92 \pm 0.20$     | Charpinet et al. (2006b)    |
| EC 20117-4014 | $5.856 \pm 0.008$                     | $34800 \pm 2000$  | $0.540 \pm 0.040$ | $-4.17 \pm 0.08$     | Randall et al. (2006b)      |
| PG 0911+456   | $5.777 \pm 0.002$                     | $31940 \pm 220$   | $0.390 \pm 0.010$ | $-4.69 \pm 0.07$     | Randall et al. (2007)       |
| BAL 090100001 | $5.383 \pm 0.004$                     | $28000 \pm 1200$  | $0.432 \pm 0.015$ | $-4.89 \pm 0.14$     | Van Grootel et al. (2008b)  |
| PG 1336-018   | $5.739 \pm 0.002$                     | $32780 \pm 200$   | $0.459 \pm 0.005$ | $-4.54 \pm 0.07$     | Charpinet et al. (2008)     |
| PG 1605+072   | 5.248                                 | $32300 \pm 300$   | 0.707             | -5.78                | van Spaandonk et al. (2008) |
|               | 5.217                                 | $32300 \pm 300$   | 0.561             | -6.22                |                             |
|               | $5.226 \pm 0.004$                     | $32300 \pm 300$   | $0.528 \pm 0.002$ | $-5.88 \pm 0.04$     | Van Grootel (2008)          |
|               | 5.276                                 | $32630 \pm 600$   | 0.731             | -2.83                | Van Grootel et al. (2010a)  |
|               | 5.278                                 | $32630 \pm 600$   | 0.769             | -2.71                |                             |
| EC09582-1137  | $5.788 \pm 0.004$                     | $34805 \pm 230$   | $0.485 \pm 0.011$ | $-4.39\pm0.10$       | Randall et al. (2009)       |
| KPD 1943+4058 | $5.520 \pm 0.030$                     | $27730 \pm 270$   | $0.496 \pm 0.002$ | $-2.55 \pm 0.07$     | Van Grootel et al. (2010b)  |
| KPD 0629-0016 | $5.450 \pm 0.034$                     | $26485 \pm 195$   | $0.471 \pm 0.002$ | $-2.42\pm0.07$       | Van Grootel et al. (2010c)  |
| KIC02697388   | $5.489 \pm 0.033$                     | $25395 \pm 225$   | $0.463 \pm 0.009$ | $-2.30\pm0.05$       | Charpinet et al. (2011)     |
|               | $5.499 \pm 0.049$                     | 25395±225         | $0.452 \pm 0.012$ | $-2.35 \pm 0.05$     |                             |

15 sdB stars modeled by asteroseismology

# II. The extended sample (sdB + WD or dM star)

| Name          | $\log g \; (\mathrm{cm \; s^{-2}})$ | $T_{\rm eff}$ (K) | $M_1 (M_{\odot})$ | Nature | Eclipses | References             |
|---------------|-------------------------------------|-------------------|-------------------|--------|----------|------------------------|
| KPD 0422+5421 | $5.565 \pm 0.009$                   | $25000 \pm 1500$  | 0.511±0.049       | sdB+WD | yes      | Orosz & Wade (1999)    |
| PG 1241-084   | $5.63 \pm 0.03$                     | $28490 \pm 210$   | $0.48 \pm 0.09$   | sdB+dM | yes      | Wood & Saffer (1999)   |
|               | $5.60 \pm 0.12$                     | $28490 \pm 210$   | $0.485 \pm 0.013$ |        | -        | Lee et al. (2009)      |
| HS 0705+6700  | 5.40±0.10                           | $28800 \pm 900$   | 0.48              | sdB+dM | yes      | Drechsel et al. (2001) |
| HS 2333+3927  | 5.70±0.10                           | $36500 \pm 1000$  | 0.38              | sdB+dM | no       | Heber et al. (2005)    |
| NSVS 14256825 | $5.50 \pm 0.02$                     | $35000 \pm 5000$  | 0.46              | sdB+dM | yes      | Wils et al. (2007)     |
| PG 1336-018   | $5.74 \pm 0.05$                     | $31300 \pm 300$   | $0.389 \pm 0.005$ | sdB+dM | yes      | Vuckovic et al. (2007) |
|               | 5.77±0.06                           | $31300 \pm 300$   | $0.466 \pm 0.006$ |        |          |                        |
|               | $5.79 \pm 0.07$                     | $31300 \pm 300$   | $0.530 \pm 0.007$ |        |          |                        |
| 2M 1533+3759  | $5.57 \pm 0.07$                     | 29230±125         | $0.376 \pm 0.055$ | sdB+dM | yes      | For et al. (2010)      |
| 2M 1938+4603  | $5.425 \pm 0.009$                   | $29565 \pm 105$   | $0.48 \pm 0.03$   | sdB+dM | yes      | Østensen et al. (2010) |
| KPD 1946+4340 | $5.452 \pm 0.006$                   | $34500 \pm 400$   | $0.47 \pm 0.03$   | sdB+WD | yes      | Bloemen et al. (2011)  |

deling + spectroscopy  $\Rightarrow$  mass of the sdB

Need uncertainties to build a mass distribution  $\Rightarrow$  5 sdB stars retained in this subsample

Extended sample:

= 20 sdB stars with ac

I. Assumption of a normal distribution

$$L(\mu,\sigma) = \prod_{i=1}^{N} \left[ 2\pi(\sigma^2 + \sigma_i^2) \right]^{-1/2} \exp\{-\frac{(m_i - \mu)^2}{2(\sigma^2 + \sigma_i^2)}\}$$

Ided sample:  $\mu = 0.468$  Ms and  $\sigma = 0.026$  eroseismic sample:  $\mu = 0.467$  Ms and  $\sigma = 0.07$ 



### Red curve: Blue curve:





(especially between singles and binaries)



Empirical distribution agrees well with expectations of stellar evolution theory...but still small-number statistics !

• Single star evolution (enhanced mass loss at tip of RGB) 0.40 - 0.43  $\leq$  M\_/Ms  $\leq$  0.52 (Dorman et a

Binary star evolution (Han et al. 2002, 20

elope ejection (CE), stable mass transfer by Roci He-white dwarf mergers





 $\bigcirc$ 

S between distributions C odeling, single, binaries, etc.)

tion scenario <u>does</u> exist the merger scenario ? (single stars with fa mass distribution agrees well with theoretica.

But:

20 objects: 11 (apparently) single stars and known sdB, ~100 pulsators are now know

Veling and asteroseismology ar