Mixing in stars

Macrophysics of stellar interiors

Jean-Paul Zahn
Observatoire de Paris

The Impact of Asteroseismology across Stellar Astrophysics

KITP, Santa Barbara, Oct. 24 - 28, 2011

Modelling stellar interiors in the 20th century

- 50's: first realistic models Schwarzschild criterion, MLT [Boehm-Vitense, Schwarzschild & coll.]
- 60's: evolutionary sequences
 [Cameron & Ezer, Hofmeister, Kippenhahn & Weigert, Iben]
- 70's: refinements introduction of overshoot [Maeder, Roxburgh, etc.]
- 80's: first attempts to introduce mixing in radiation zones
 [Maeder & Schatzman, Sofia & coll., JPZ, etc.]
- 90's: implementation of microscopic diffusion

 gravitational settling + radiative acceleration
 [Michaud, Vauclairs, & coll.]
- → PRESENT STANDARD MODEL NO MIXING IN RAD. ZONE

Evidence of "extra" mixing in radiation zones

He and N excess at surface of massive stars and supergiants

Abundance anomalies at surface of red giants (12C/13C)

Li depletion in solar-type stars

Existence of "normal" stars

Reduced abundance anomalies at surface of 'tepid' stars

Consequences

Mixing increases life-time of stars

Determines later stages of evolution

Rules chemical evolution of Galaxy / galaxies

How to treat this extra mixing

Numerical approach

Solve directly the 3D hydrodynamic equations

- Extremely time/resources consuming
- Global simulations: cannot grasp all relevant scales
- Applicable to small domains: to study local instabilities
 → prescriptions for transport
- Serious problem with shear flows: resolution still insufficient to reach threshold for nonlinear instabilities

How to treat this extra mixing

Parametric approach:

Assume that mixing and transport of AM are due to diffusion Introduce parametrized turbulent diffusivities Adjust parameters to fit observations

Physical approach:

Strive to implement the physical processes that are likely to cause mixing:

- meridional circulation induced by torques (wind, accretion, etc.)
 and structural changes
- turbulence produced by instabilities (shear, magnetic, thermohaline, etc.)

Mixing processes in radiation zones

Meridional circulation

Classical picture: circulation is due to thermal imbalance caused by perturbing force (centrifugal, magn. field, etc.)

Eddington (1925), Vogt (1925), Sweet (1950), Mestel (1950) etc.

Eddington-Sweet time
$$t_{ES} = t_{KH} \frac{GM}{\Omega^2 R^3}$$
, with $t_{KH} = \frac{GM^2}{RL}$

Revised picture: after a transient phase of about $t_{\rm ES}$, circulation is driven by the loss (or gain) of angular momentum and by structural changes due to evolution

Busse (1981), JPZ (1992), Maeder & JPZ (1998), JPZ & Mathis (2004)

Meridional circulation - revised treatment

horizontal average shellular rotation $\Omega(r)$

$$-\frac{8\pi}{15}\rho r^4\Omega U - \frac{8\pi}{3}\rho v_v r^4 \frac{\partial\Omega}{\partial r} = -\frac{\partial J}{\partial t}$$
 advection through angular momentum diffusion diffusion flux

20 M_☉ star with mass loss

circulation required to transport AM to surface

 Ω profile steepens as the star evolves

Maeder & Meynet 2000

Rotational mixing in radiation zones

Turbulence caused by vertical shear $\Omega(\mathbf{r})$ (baroclinic instability)

- if maximum of vorticity (inflexion point): linear instability
- if no maximum of vorticity: finite amplitude instability
- stabilizing effect of stratification reduced by thermal diffusion

turbulence if
$$Ri_c \left(\frac{dV_{hor}}{dr}\right)^2 > N^2 \left(\frac{w\ell}{K}\right)$$

Richardson criterion

from which one deduces the turbulent diffusivity (if $\mu = cst$)

$$D_v = w\ell = Ri_c K \frac{\Omega^2}{N^2} \left(\frac{d \ln \Omega}{d \ln r} \right)^2$$

Townsend 1959 Dudis 1974; JPZ 1974 Lignières et al. 1999

K thermal diffusion; v viscosity; N buoyancy frequency

Turbulence caused by horizontal shear $\Omega(\theta)$ (barotropic instability)

Assumptions:

- instability acts to suppress its cause, i.e. diff. rotation in latitude $\Omega(\theta)$
- turbulent transport is anisotropic (due to stratification): $D_h >> D_v$
- → "horizontal turbulence" interferes with vertical transport :
 - erodes stabilizing effect of stratification; shear-unstable when

$$Ri_{c} \left(\frac{d \ln \Omega}{d \ln r} \right)^{2} > N_{t}^{2} \left(\frac{wl}{K} \right) + N_{\mu}^{2} \left(\frac{wl}{D_{h}} \right)$$
 Talon & JPZ 1997

- turns advection of chemicals into vertical diffusion

$$D_{eff} = \frac{1}{30} \frac{(rU)^2}{D_h}$$

Chaboyer & JPZ 1992

Main weakness: no firm prescription for D_h

Maeder 2003 Mathis, Palacios & JPZ 2004

Fortunately, one expects $D_v >> D_{eff}$

→ Transport of chemical : diffusion

→ transport of AM : advection

Rotational mixing - the observational test

Assumption: the processes that cause the mixing of chemical elements (i.e. circulation and turbulence)
are also responsible for the transport of angular momentum
JPZ 1992, Maeder & JPZ 1998

- quite successful with early-type stars (fast rotators)
 Talon et al. 1997; Maeder & Meynet 2000; Talon & Charbonnel 1999
- for late-type stars (which are spun down by wind) predicts
 - fast rotating core not true: helioseismology
 - strong destruction of Be in Sun not observed
 - mixing correlated with loss of angular momentum not true: Li in tidally locked binaries not true: little dispersion in the Spite plateau
 - ⇒ Another, more powerful process is responsible for the transport of angular momentum

Hence 2 types of rotational mixing

In both, circulation and turbulence are responsible for the mixing of chemical elements

Rotational mixing of type I:

angular momentum too is carried by
circulation and turbulence

Rotational mixing of type II:

another process operates for the transport of angular momentum; it has indirect impact on mixing, by shaping $\Omega(\mathbf{r})$

- magnetic field ?
- internal gravity waves ?

Possible effects of magnetic field

(cf. M. Browning, this conf.)

Dynamo field (solar-type stars, or from convective core)

Likely to have cyclic reversals → will not penetrate into RZ

[Garaud 1999]

Fossil field (such as in Ap/Bp stars)

Renders the rotation uniform [Mestel and coll.]
 along field lines if axisymmetric (Ferraro law)

• Imprints diff. rotation of CZ on RZ [Strugarek, Brun & JPZ 2011]

Fossil field and differential rotation

Fossil field expands into CZ, and prints its differential rotation on RZ

not observed in Sun!

3D simulations - ASH code
Still debated [Wood

[Strugarek, Brun & JPZ 2011] [Wood, McCaslin & Garaud 2011]

Role of magnetic field

(cf. M. Browning, this conf.)

Dynamo field (solar-type stars, or from convective core)

Likely to have reversals → will not penetrate into RZ

[Garaud 1999]

Fossil field (such as in Ap stars)

Renders the rotation uniform [Mestel and coll.]
 along field lines if axisymmetric (Ferraro law)

• Imprints diff. rotation of CZ [Strugarek, Brun & JPZ 2011]

• Suppresses hydro instabilities [Charbonnel & JPZ 2008]

Field itself may be unstable

[Tayler & coll.; Spruit 1998]

- yes but instabilities are probably of Alvénic type → no mixing
- may these instabilities sustain a dynamo? Probably not

[Spruit 2002, JPZ, Brun & Mathis 2007]

Angular momentum transport by waves

Press 1981, Garcia-Lopez & Spruit 1991, Schatzman 1993, Zahn et al 1997

Internal gravity waves and gravito-inertial waves are emitted at the edge of the convection zone

They transport angular momentum into the RZ, which they deposit when damped through thermal diffusion

damping rate
$$\propto \sigma^{-4}$$

 $\sigma(r,m) = \sigma_c + m[\Omega(r) - \Omega_{zc}]$

- if there is differential rotation,
 prograde and retrograde waves deposit
 their momentum (of opposite sign)
 at different locations
- waves strengthen the local diff. rotation, until the shear becomes unstable ⇒ turbulence

Talon et al 2002, Talon & Charbonnel 2005 Mathis (this conf.)

Thermohaline mixing

A stable temperature stratification $\nabla_{ad} > \nabla$ can be destabilized by an inverse μ gradient as soon as $\nabla_{\mu} < 0$ because heat diffuses much faster than chemicals (μ)

→ thermohaline instability

In stars, such inversions occur

- when heavy nuclides are accreted [Vauclair 2004]
- in regions of hydrogen burning, due to ³He + ³He → ⁴He + 2p [Ulrich 1972, Eggleton et al. 2006, Charbonnel & Zahn 2007, Denissenkov & Pinsonneault 2008, Lagarde et al 2011, Théado & Vauclair 2011]

Laboratory analog: stable temperature stratification, unstable salt stratification

mixing efficiency? fingers? staircases? numerical simulations will tell

[Traxler, Garaud & Stellmach 2010, Denissenkov & Merryfield 2010]

Weak points of present models including mixing in radiation zones

- Description of the turbulence caused by differential rotation
- Power spectrum for IGW emitted at edge of convection zone
- Impact of rotation and magnetic field on IGW inertial waves
- Particle transport by IGW ?
- Role of instabilities due to magnetic field?
- Prescription for thermohaline mixing

Necessity of sounding stellar interiors: asteroseismology

Prime targets: Convection Rotation

Some achievements of asteroseismology

• β Cep star HD 129929

[Aerts, Thoul, Daszynska, Scuflaire, Waelkens, Dupret, Niemcsura, Noels 2003]

- slow rotator detection & identification of six modes of l = 0,1,2
 - \rightarrow extra mixing above core of $\approx 0.1 H_P$ (convective penetration)
 - → core rotates 3 to 4 times faster than surface *
- β Cep star GX Pegasi

[Pamyatnykh, Handler & Dziembowski 2004]

- slow rotator detection & identification of mixed modes
 - → core rotates ≈ 5 times faster than surface *

Space borne asteroseismology

- two pulsating Be stars HD 181231 HD 175869
 [CoRoT; Neiner, Mathis, Saio, Lovekin, Eggenberger, Lee 2011]
 - rapid rotators detection & identification of g-modes
 - \rightarrow extra mixing above core of \approx 0.2 to 0.35 H_P (convective penetration plus rotational mixing) •

- red giants observed by Kepler (under embargo)
 [Kepler; Beck, Montalban, Kallinger, De Ridder, Aerts et al 2011]
 - rotational splitting of mixed modes
 - → cores rotate 10 times faster as surface *

