Tidally-Excited Stellar Pulsations in KEPLER KOI-54 and Resonance Locking

DYNAMICAL TIDES IN KOI-54

Jim Fuller, Cornell

KITP Asteroseismo

Oct 11, 2011

FIG. 1.— upper: The detrended and normalized Kepler light curve of KOI-54. lower: A detailed view of a brightening event.

FIG. 7.— Relative contributions to the brightening from the tidal/ellipsoidal distortion only (solid curve) and irradiation/reflection only (dashed curve).

KOI-54 SYSTEM PARAMETERS

	parameter	value	error	unit
tions	T_1	8500	200	К
	T_2	8800	200	K
	L_{2}/L_{1}	1.22	0.04	
I.VB	$v_{\rm rot,1} \sin i_1$	7.5	4.5	$\rm km/s$
Obse	$v_{\rm rot,2} \sin i_2$	7.5	4.5	km/s
	$[Fe/H]_1$	0.4	0.2	,
	$[Fe/H]_2$	0.4	0.2	
ghtcurve/RV modeling	M_2/M_1	1.025	0.013	
	$P_{\rm orb}$	41.8051	0.0003	days
	e	0.8342	0.0005	-
	ω	36.22	0.90	degrees
	i	5.52	0.10	degrees
	a	0.395	0.008	ĀU
	M_1	2.32	0.10	R_{\odot}
	M_2	2.38	0.12	R_{\odot}
	R_1	2.19	0.03	M_{\odot}
Ē	R_2	2.33	0.03	M_{\odot}

ID	$_{\rm (d^{-1})}^{\rm frequency}$	frequency (µHz)	$amplitude (\mu mag)$	f/f_{orbit}	nearest harmonic
F1	2.1529	24.917	297.7	90.00	90
F2	2.1768	25.195	229.4	91.00	91
F3	1.0525	12.182	97.2	44.00	44
F4	0.9568	11.074	82.9	40.00	40
F5	0.5363	6.207	82.9	22.42	
F6	1.6405	18.988	49.3	68.58	
F7	1.7222	19.933	30.2	72.00	72
F8	1.5087	17.462	17.3	63.07	63
F9	1.3773	15.941	15.9	57.58	
F10	0.6697	7.751	14.6	28.00	28
F11	1.2678	14.673	13.6	53.00	53
F12	1.1241	13.011	13.4	46.99	47
F13	0.9329	10.798	12.5	39.00	39
F14	1.4349	16.608	11.6	59.99	60
F15	0.8851	10.244	11.5	37.00	37
F16	1.6983	19.656	11.4	71.00	71
F17	0.6183	7.156	11.1	25.85	
F18	1.8178	21.039	9.8	75.99	76
F19	0.8574	9.924	9.3	35.84	
F20	0.6458	7.475	9.1	27.00	27
F21	1.0284	11.903	8.4	42.99	43
F22	1.0765	12.460	8.3	45.01	45
F23	1.5092	17.467	8.1	63.09	63
F24	0.8610	9.965	6.9	35.99	36
F25	1.4452	16.726	6.8	60.42	
F26	1.2439	14.397	6.4	52.00	52
F27	1.0078	11.664	6.3	42.13	
F28	0.7894	9.137	5.9	33.00	33
F29	0.6937	8.028	5.8	29.00	29
F30	1.1483	13.290	5.7	48.00	48

TABLE 3 THIRTY LARGEST KOI-54 PULSATIONS

NOTE. — Formal uncertainty in amplitudes is 0.3 μ mag. Orbital frequency f_{orbit} was found via least-squares fit to best match the harmonics: $f_{orbit} = 0.0239205 \text{ d}^{-1} = 0.276857 \,\mu\text{Hz}.$

NOMENCLATURE

- Orbital Frequency Ω
- Spin Frequency Ω_{s}
- Inertial Mode Frequency

$$\sigma_{\alpha} = \varepsilon_{\alpha} + m(1 - C_{\alpha})\Omega_s$$
$$= \omega_{\alpha} + m\Omega_s$$

PROPAGATION DIAGRAM

NON-RESONANT MODE ENERGIES

• Forced, adiabatic modes, ignoring Coriolis force

$$\Delta E_{\alpha} = \frac{GM'^2}{R} \left(\frac{R}{D_p}\right)^{2(l+1)} \frac{2\pi^2 \sigma_{\alpha}}{\varepsilon_{\alpha}} |Q_{\alpha} K_{lm}(\sigma_{\alpha})|^2$$
$$K_{lm}(\sigma_{\alpha}) = \frac{W_{lm}}{2\pi} \int_{-P/2}^{P/2} dt \left(\frac{R}{D}\right)^{l+1} e^{i\sigma_{\alpha}t - im\Phi}$$
$$Q_{\alpha} = \langle \xi_{\alpha} | \nabla (r^l Y_{lm}) \rangle$$
$$= \int d^3x \ \rho \xi_{\alpha}^* \cdot \nabla (r^l Y_{lm})$$
$$= \int d^3x \ \delta \rho_{\alpha}^* r^l Y_{lm}.$$

FORCED OSCILLATOR EQUATIONS

• Mode amplitude satisfies

$$\dot{c}_{\alpha} + (i\omega_{\alpha} + \gamma_{\alpha})c_{\alpha} = \frac{iGM'W_{lm}Q_{\alpha}}{2\varepsilon_{\alpha}a^{l+1}} \\ \times \sum_{N=-\infty}^{\infty} F_{Nm}e^{i(m\Omega_{s}-N\Omega)t}$$

• Nonhomogeneous solution:

$$c_{\alpha}(t) = \frac{GM'W_{lm}Q_{\alpha}}{2\varepsilon_{\alpha}a^{l+1}} \sum_{N=-\infty}^{\infty} \frac{F_{Nm}e^{-i(N\Omega - m\Omega_s)t}}{(\sigma_{\alpha} - N\Omega) - i\gamma_{\alpha}}$$

Face-on ($\theta = \theta$)

TUNED MODEL FLUX VARIATIONS

RESONANCE LOCKING

- Modes absorb orbital energy, thus increasing the orbital frequency
- As modes are excited and damp, they spin up star, changing the mode frequency in the inertial frame

$$\sigma_{\alpha} = \varepsilon_{\alpha} + m(1 - C_{\alpha})\Omega_s$$

- At resonance, $\sigma_{oldsymbol{lpha}}=N\Omega$
- Mode can stay in resonance if $\dot{\sigma}_{\alpha} = N \dot{\Omega}$

RESONANCE LOCKING CONTINUED

• Modes also absorb orbital angular momentum

$$\dot{E}_{\rm orb} = -\sum_{\alpha} 2\gamma_{\alpha} E_{\alpha}, \quad \dot{J}_{\rm orb} = -\sum_{\alpha} 2\gamma_{\alpha} E_{\alpha} \frac{m}{\sigma_{\alpha}}$$

• Solve to find

$$N_c = m \left(\frac{B_\alpha \mu a^2}{3I}\right)^{1/2}$$

EVEN MORE RESONANCE LOCKING

• Introduce spin down term to find modes can lock if

 $N < N_c$

• Mode reaches equilibrium when

$$\epsilon_{\rm eq} \simeq \frac{1}{2\pi} \left[\frac{t_D \delta_N}{t_{d\alpha}} - (\gamma_{\alpha} P)^2 \right]^{1/2} \ll 1$$

• Mode may reach 10⁴ times normal energies

NON-LINEAR MODE COUPLING

- Several modes detected at non-integer multiples of orbital frequency
 - Likely the result of non-linear coupling to daughter modes
- Occurs when

$$\sigma_p \simeq \sigma_{d1} + \sigma_{d2}$$

• In KOI-54,

$\sigma_2 \simeq \sigma_5 + \sigma_6$

• Other non-integer modes likely due to non-linear coupling in which one of the daughter modes is invisible (e.g., the visible daughter mode has m=0, the invisible mode has m=2)

FUTURE PROSPECTS

• Identify modes using spectral techniques

• Measure orbital decay?

• Tidal asteroseismology