# Estimating stellar mean density through seismic inversions

# D. R. Reese, J. P. Marques, M. J. Goupil, M. J. Thompson, S. Deheuvels

LESIA, Paris Observatory

October 18, 2011



#### Introduction

#### The importance of stellar mass

- dominant role in evolution and final fate of stars
- a key parameter when characterizing exoplanetary systems
- however, it can be difficult to obtain for single stars

#### Various approaches for determining stellar mass

- comparisons with evolutionary tracks in HR diagrams
  - large error bars & regions with overlapping tracks
- mean density from asteroseismology & radius from parallax
  - simple scaling laws
  - search for models in a grid
  - full density inversion & integration to get mean density

#### 1 Introduction

#### 2 Theoretical aspects

- Linear inversions
- Different inversion procedures
- Non-linear extension

#### 3 Results

- The sun
- Grid of models
- Observed stars



- starting point: reference model which is not too far from the observed star
- this leads to frequency differences which can be related to differences on the structure:

$$\frac{\delta\nu_{n\ell}}{\nu_{n\ell}} = \int_0^1 \mathcal{K}_{\rho,\Gamma_1}^{n\ell}(x) \frac{\delta\rho}{\rho} \mathrm{d}x + \int_0^1 \mathcal{K}_{\Gamma_1,\rho}^{n\ell}(x) \frac{\delta\Gamma_1}{\Gamma_1} \mathrm{d}x + \frac{F_{\mathrm{surf}}(\nu_{n\ell})}{Q_{n\ell}},$$

• 
$$\frac{\delta \nu_{n\ell}}{\nu_{n\ell}} = \frac{\nu_{\rm obs} - \nu_{\rm ref}}{\nu_{\rm ref}}$$

• the kernels  $K^{n\ell}_{\rho,\Gamma_1}$  and  $K^{n\ell}_{\Gamma_1,\rho}$  are deduced via the variational principle

Results

### Mean density difference

• the difference in mass between the star and the reference model is:

$$\delta M = \int_0^R 4\pi \delta \rho r^2 \mathrm{d}r = \int_0^R 4\pi \rho r^2 \frac{\delta \rho}{\rho} \mathrm{d}r$$

• the difference in mean density is:

$$\frac{\delta \underline{\rho}}{\underline{\rho}} = \int_0^1 4\pi x^2 \frac{\rho R^3}{M} \frac{\delta \rho}{\rho} \mathrm{d}x,$$

- where  $\underline{\rho} = 3M/(4\pi R^3)$
- this last equation still applies even if the star and the model don't have the same radii

Introduction

• a linear combination of the  $\delta \nu / \nu$  can then be re-expressed as:

$$\sum_{i} c_{i} \frac{\delta \nu_{i}}{\nu_{i}} = \int_{0}^{1} \underbrace{\left\{ \sum_{i} c_{i} K_{\rho,\Gamma_{1}}^{i} \right\}}_{K_{\text{avg}}} \frac{\delta \rho}{\rho} dx + \int_{0}^{1} \underbrace{\left\{ \sum_{i} c_{i} K_{\Gamma_{1},\rho}^{i} \right\}}_{K_{\text{cross}}} \frac{\delta \Gamma_{1}}{\Gamma_{1}} dx + \underbrace{\sum_{i} c_{i} \frac{F_{\text{surf}}(\nu_{i})}{Q_{i}}}_{\text{surface terms}}$$

• in order to obtain  $\delta \underline{\rho} / \underline{\rho} \simeq \sum_{i} c_{i} \frac{\delta \nu_{i}}{\nu_{i}}$ , one needs:

• 
$$K_{\text{avg}}$$
 (= "averaging kernel") goes to  $4\pi\rho R^3 x^2/M$ 

- $\mathcal{K}_{\mathrm{cross}}$  (="cross-term kernel") and the surface terms go to 0
- the following condition ensures the correct inversion result for a homologous transformation:

$$\sum_{i} c_i = 2$$

 inversion procedures which satisfy this condition will be called "unbiased" Theoretical aspects ○○○●○○○○ Results

# SOLA method

#### Minimization of the following function

$$J(c_i) = \underbrace{\int_0^1 \left\{ 4\pi \frac{\rho R^3}{M} x^2 - K_{avg}(x) \right\}^2 dx}_{\mathbf{I}} + \underbrace{\beta \int_0^1 \left\{ K_{cross}(x) \right\}^2 dx}_{\mathbf{II}} + \underbrace{\tan \theta \sum_i \frac{c_i^2 \sigma_i^2}{\langle \sigma^2 \rangle}}_{\mathbf{III}} + \underbrace{\lambda \left\{ 1 - \int_0^1 K_{avg} dx \right\}}_{\mathbf{IV}} + \underbrace{\sum_{m=0}^{M_{surf}} a_m \sum_i \frac{c_i \Psi_m(\nu_i)}{Q_i}}_{\mathbf{V}}$$

| Role  | of different terms        | Free parameters   |
|-------|---------------------------|-------------------|
| I.    | optimizes $K_{ m avg}$    |                   |
| - 11  | minimizes $K_{\rm cross}$ | β                 |
| - 111 | regularization            | θ                 |
| IV    | normalizes $K_{ m avg}$   |                   |
| V     | minimizes surface effects | M <sub>surf</sub> |

# Large frequency separation

• scaling law with large frequency separation:

$$\langle \Delta \nu \rangle \propto \sqrt{\rho}$$

• in differential form, this law becomes:

$$2\frac{\delta \langle \Delta \nu \rangle}{\langle \Delta \nu \rangle} = \frac{\delta \underline{\rho}}{\underline{\rho}}$$

- the left hand = a linear combination of  $\delta \nu_i / \nu_i$ 
  - this leads to linear inversion coefficients c<sub>i</sub>
  - $\bullet\,$  this allows the construction of  ${\it K}_{\rm avg}$  and  ${\it K}_{\rm cross}$

# The KBCD method

- Kjeldsen et al. (2008) proposed a method for correcting for surface effects
- as a by-product, this method also yields the mean density:

$$\frac{\underline{\rho}_{\rm obs}}{\underline{\rho}_{\rm ref}} \simeq \left\{ \frac{b-1}{b\frac{\langle\nu\rangle_{\rm ref}}{\langle\nu\rangle_{\rm obs}} - \frac{\langle\Delta\nu\rangle_{\rm ref}}{\langle\Delta\nu\rangle_{\rm obs}}} \right\}^2$$

• to first order, this becomes

$$rac{\delta \underline{
ho}}{\underline{
ho}} \simeq 2 rac{b rac{\delta \langle 
u 
angle}{\langle 
u 
angle} - rac{\delta \langle \Delta 
u 
angle}{\langle \Delta 
u 
angle}}{b-1}$$

- in what follows, we will use b = 4.9, *i.e.* the solar value
- once more, the right hand = a linear combination of  $\delta \nu_i / \nu_i$

#### Non-linear extension

• one can prescale the reference model by a scale factor, *s*, to try to bring the differences to the linear regime:

$$\underline{\rho} \to s^2 \underline{\rho}_{\mathrm{ref}} \qquad \nu^{\mathrm{ref}} \to s \nu_i^{\mathrm{ref}}$$

• the inverted mean density becomes:

$$\underline{\rho}_{\mathrm{inv}}(s) = \underline{\rho}_{\mathrm{ref}} s^2 \left\{ 1 + \sum_i c_i \left[ \frac{1}{s} \left( \frac{\delta \nu_i}{\nu_i} + 1 \right) - 1 \right] \right\}$$

• if  $\sum_i c_i = 2$  (the inversion procedure is unbiased), this simplifies to:

$$\underline{\rho}_{\mathrm{inv}}(s) = \underline{\rho}_{\mathrm{ref}} \left\{ -s^2 + s \left( 2 + \sum_i c_i \frac{\delta \nu_i}{\nu_i} \right) \right\}$$

### Non-linear extension

 $\bullet\,$  the previous equation is a  $2^{nd}$  order polynomial with the following maximum:

$$\underline{\rho}_{\max} \equiv \underline{\rho}_{inv} \left( \mathbf{s}_{\max} \right) = \rho_{ref} \mathbf{s}_{\max}^2$$

where

$$s_{\max} = 1 + rac{1}{2}\sum_i c_i rac{\delta 
u_i}{
u_i} = rac{1}{2}\sum_i c_i rac{
u_i^{
m obs}}{
u_i^{
m ref}}$$

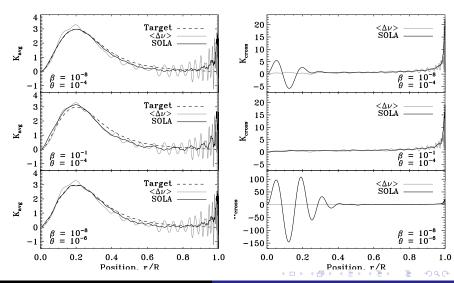
- this maximum corresponds to the best mean density estimate:
  - linear inversions bring no further corrections
  - when used on linearized scaling and KBCD laws, the original non-linear laws are (nearly) retrieved



- use model S (Christensen-Dalsgaard et al. 1996) as a reference models
- use 104 GOLF frequencies (Lazrek 1997) as observed frequencies

Results ○●○○○○○○○○○○○○○○○

#### The sun



Reese, Marques, Goupil, Thompson & Deheuvels

Estimating stellar mean density through seismic inversions

・ロト ・個ト ・モト ・モト

3

#### The sun

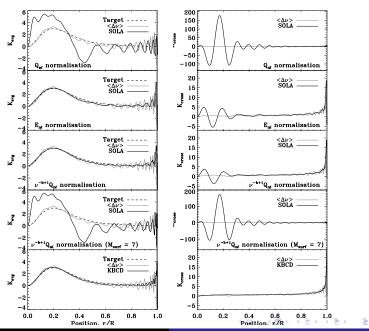
| $\beta$ $	heta$                    | $\delta \underline{\rho} / \underline{\rho}$ | $\sigma_{\delta \underline{\rho} / \underline{\rho}}$ | $\ \Delta K_{\mathrm{avg}}\ _2$ | $\ K_{\text{cross}}\ _2$ |
|------------------------------------|----------------------------------------------|-------------------------------------------------------|---------------------------------|--------------------------|
| $10^{-8}$ $10^{-4}$                | -1.9e - 3                                    | 5.3 <i>e</i> – 4                                      | 0.32                            | 2.54                     |
| $10^{-1}$ $10^{-4}$                | -5.1e - 3                                    | 1.9e - 3                                              | 0.35                            | 1.80                     |
| $10^{-8}$ $10^{-6}$                | -1.2e - 3                                    | 1.2 <i>e</i> – 2                                      | 0.31                            | 40.6                     |
| $\langle \Delta  u  angle$ scaling | -1.2e - 2                                    | 4.1e - 4                                              | 1.36                            | 2.77                     |

#### Near-surface effects

• the surface effects take on the following form:

# $\frac{F_{\text{surf}(\nu_i)}}{Q_i}$

- $F_{\rm surf}$  = slowly varying ad-hoc function of frequency only
- Q<sub>i</sub>: normalized mode inertia (typically used in structural inversions)
- the surface effects can also be normalized by:
  - E<sub>i</sub>: unnormalized mode inertia
  - $\nu^{-b+1}Q_i$ : normalization based on Kjeldsen et al. (2008)



Reese, Marques, Goupil, Thompson & Deheuvels

Estimating stellar mean density through seismic inversions

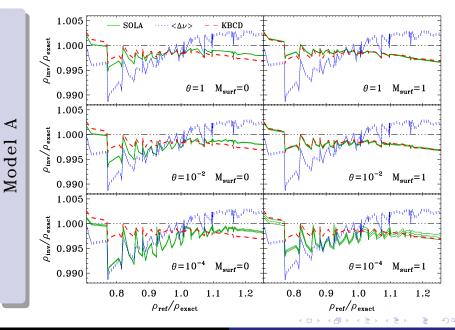
| Intr |  |  |  |  |
|------|--|--|--|--|

Ξ 9 Q (P

| $M_{\rm surf}$ | $\delta \underline{\rho} / \underline{\rho}$ | $\sigma_{\delta \rho / \rho}$                         | $\ \Delta K_{\mathrm{avg}}\ _2$                       | $\ K_{cross}\ _2$                                     |
|----------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 1              | -5.6 <i>e</i> - 2                            | 2.2e - 2                                              | 1.84                                                  | 47.0                                                  |
| 1              | -1.0e - 3                                    | 1.2e - 3                                              | 0.50                                                  | 2.55                                                  |
| 1              | -8.5 <i>e</i> - 4                            | 6.2e - 4                                              | 0.40                                                  | 2.25                                                  |
| 7              | -5.8 <i>e</i> - 2                            | 2.3e – 2                                              | 1.86                                                  | 45.9                                                  |
| -              | -1.9e - 3                                    | 5.5e - 5                                              | 0.41                                                  | 2.03                                                  |
|                | M <sub>surf</sub><br>1<br>1<br>7<br>-        | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

# Grid of models

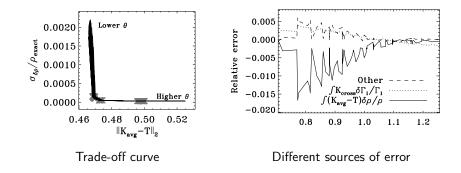
- systematic study of the different inversion procedures: grid of models
  - 93 pre-main and main sequence models
  - mass: 0.80 to 0.92  $M_{\odot}$
  - age: 28 Myrs to 17.6 Gyrs after birthline
  - source: http://www.astro.up.pt/corot/models/cesam/ (Marques et al. 2008)
- 3 "observed" stars:
  - Model A: same physics, different initial condition
  - Model A': same as Model A but with altered surface
  - Model B: different physics (different composition, diffusion, mixing)

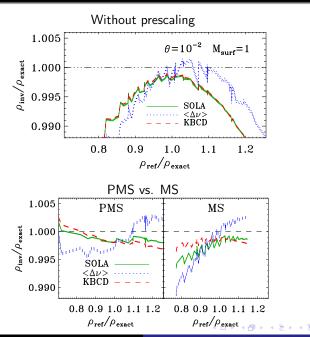


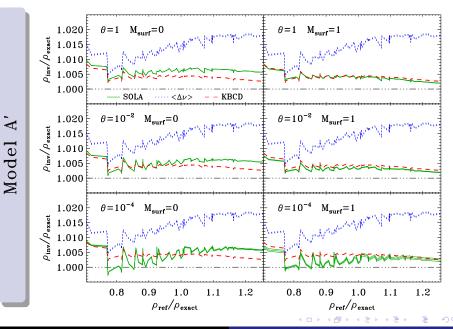
Results

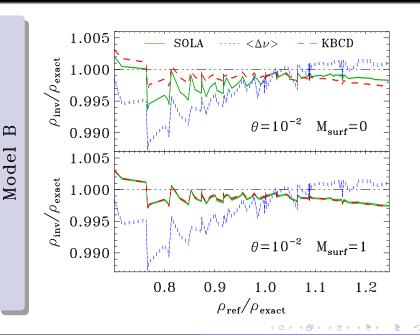
Conclusion

#### The errors





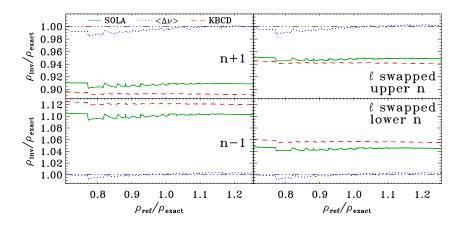




Results

Conclusion

### Mode misidentification

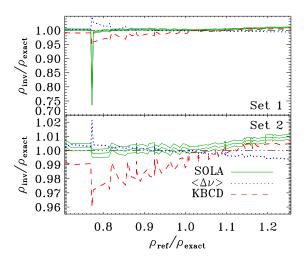


 divergent results can be used to eliminate erroneous mode identifications (also see Bedding et al. 2010, White et al. 2011)

Results

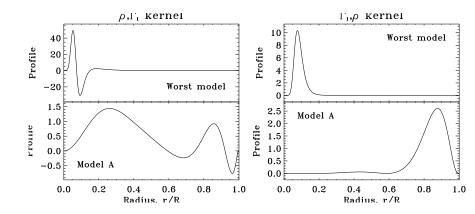
Conclusion

#### Kernel mismatch



Results

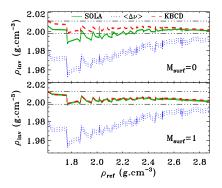
#### Kernel mismatch



Results

Conclusion

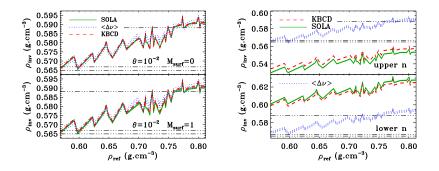
#### Observed stars – $\alpha$ Cen B



- inversion results:
  - lower than results from orbital parameters (Pourbaix et al. 2002) + parallax (Kervella et al. 2003)
  - agree with other seismic studies (Eggenberger et al. 2004, Kjeldsen et al. 2008)
- strong surface effects

Results

#### HD 49933

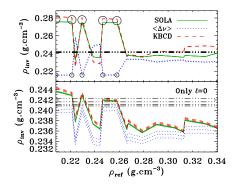


• larger spread in results in this part of the HR diagram

- lack of surface effects
- inversions clearly favor the currently accepted identification (Benomar et al. 2009)

Results

# HD 49385



- mixed modes:
  - poor results for models which are far away better results with  $\ell=0$  only
  - for very close models from Deheuvels et al. (2011), results are similar with and without mixed modes
  - · kernels from mixed modes are poorly adapted

### Conclusion

- large frequency scaling produces sub-optimal results
- KBCD and SOLA approach are similar:
  - similar mean density estimates
  - similar averaging and cross-term kernels
  - more robust to surface effects
- $\bullet$  accuracy goes from  $\pm 0.5\%$  to  $\pm 2.5\%$
- using  $\langle \Delta \nu \rangle$  scaling law + KBCD or SOLA method can identify modes
- importance of using models which are close to the observed star rather than scaling everything on solar values
- mixed modes do not improve results very much