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What is the Gkeyll Project?

The Gkeyll Project aims to develop a computational plasma physics tool to
simulate plasmas at (almost) all scales.

• Group of graduate students, postdocs and senior researchers, spanning
multiple institutes (PPPL, PU, Virginia Tech, MIT) working of various
aspects of algorithm development and physics applications.

• Group is focused on developing the Gkeyll code1 and applying it to
various physics problems.

• Spans scales from full kinetic (Vlasov-Maxwell), to EM gyrokinetics ,
kinetic wall-bounded plasmas to muti-fluid moment models

• All solvers share common framework, allowing people to work on different
aspects of the code and make an impact on the broader project

1See http://gkeyll.rtfd.io
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Kinetic physics from first-principles

We would like to solve the Vlasov-Maxwell system, treating it as a
partial-differential equation (PDE) in 6D:

∂fs
∂t

+∇x · (vfs) +∇v · (Fs fs) =

(
∂fs
∂t

)
c

where Fs = qs/ms(E + v × B). The EM fields are determined from
Maxwell equations

∂B

∂t
+∇× E = 0

ε0µ0
∂E

∂t
−∇× B = −µ0J

3 / 32 Gkyell Continuum Kinetics A. Hakim



Hamiltonian systems: gyrokinetics, self-gravitating systems

Evolution of distribution function can be described as Hamiltonian system

∂f

∂t
+ {f ,H} = 0

f (t, z) is distribution function, H(z) is Hamiltonian and {g , f } is the
Poisson bracket operator. The coordinates z = (z1, . . . , zN) label the
N-dimensional phase-space.
Defining α = (ż1, . . . , żN), where ż i = {z i ,H}, gives

∂

∂t
(J f ) +∇z · (Jαf ) = 0

where J is Jacobian of the (potentially) non-canonical coordinates. Note
that flow in phase-space is incompressible, i.e. ∇z · (Jα) = 0.
We need three ingredients: Hamiltonian, Poisson Bracket, and field equation.
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Solve VM system efficiently and conserve invariants

We know that the Vlasov-Maxwell (and Hamiltonian) system
conserves, total number of particles; total (field + particle)
momentum; total (field + particle) energy; other invariants. Can a
numerical scheme be designed that retains (some or all) of these
properties?

Important to realize that conservation properties are indirect: don’t
evolve total energy or total momentum equation.

For understanding kinetic turbulence and other problems, we would
like a noise-free algorithm that allows studying phase-space structures
correctly, in a noise-free manner.

Explore high-order discontinuous Galerkin algorithms to directly
discretize kinetics systems as a PDE in phase-space.
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DG represents state-of-art for hyperbolic PDEs

DG algorithms hot topic in CFD and applied mathematics.

• First introduced by Reed and Hill in 1973 as a conference paper to solve
steady-state neutron transport equations. More than 2100 citations.

• Some earlier work on solving elliptic equations by Nitsche in 1971
(original paper in German). Introduced the idea of “interior penalty”.
Usually, though, DG is not used for elliptic problems. Paradoxically,
perhaps DG may be even better for certain elliptic/parabolic problems.

• Key paper for nonlinear systems in multiple dimensions is by Cockburn
and Shu (JCP, 141, 199-224, 1998). More than 1700 citations.

• Almost continuous stream of papers in DG, both for fundamental
formulations and applications to physics and engineering problems. This
continues to be an active area of research, and at present DG is
under-utilized in plasma physics.

6 / 32 Gkyell Continuum Kinetics A. Hakim



What are discontinuous Galerkin schemes?

Discontinuous Galerkin schemes are a class of Galerkin schemes in
which the solution is represented using piecewise discontinuous
functions.

• Galerkin minimization

• Piecewise discontinuous representation
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Essential ideas

Consider a general time-dependent problem on x ∈ [−1, 1]:

f ′(x , t) = G [f ]

where G [f ] is some operator. To approximate it expand f (x) with our basis
functions Pk(x),

f (x , t) ≈ fh(x , t) =
N∑

k=1

fk(t)Pk(x)

This gives discrete system

N∑
k=1

f ′kPk(x) = G [fh]

Question

How to determine f ′k in an optimum manner?
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Essential idea

Answer: Do an L2 minimization of the error, i.e. find f ′k such that the error
as defined by our selected norm is minimized.

EN =

∥∥∥∥∥
N∑

k=1

f ′kPk(x)− G [fh]

∥∥∥∥∥
2

=

∫ 1

−1

[
N∑

k=1

f ′kPk(x)− G [fh]

]2

dx

For minimum error ∂EN/∂f
′
m = 0 for all k = 1, . . . ,N. This leads to the

linear system that determines the coefficients f ′k∫ 1

−1

Pm(x)

(
N∑

k=1

f ′kPk(x)− G [fh]

)
dx = 0

for all m = 1, . . . ,N. This will give

f ′k =
2k + 1

2

∫ 1

−1

Pk(x)G [fh] dx
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What does a typical L2 fit look like?

In discontinuous Galerkin schemes we split interval into cells and use
Galerkin scheme in each cell. This will naturally lead to
discontinuities across cell boundaries.

Figure: The best L2 fit of x4 + sin(5x) with piecewise linear (left) and
quadratic (right) basis functions.
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Weak-equality and recovery

• It is important to remember that the discontinuous Galerkin solution is a
representation of the solution and not the solution itself.

• Notice that even a continuous function will, in general, have a discontinuous
representation in DG.

We can formalize this idea using the concept of weak-equality. Choose an inner
product, for example

(f , g) ≡
∫
I

f (x)g(x) dx .

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk , f − g) = 0

for all k = 1, . . . ,N. We denote weak equality by

f
.

= g .
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Weak-equality and recovery

• Notice that weak-equality depends on the function space as well as the
inner-product we selected.

• The Galerkin L2 minimization is equivalent to, for example, restating that

f ′(x , t)
.

= G [f ]

This implies (
ψk , f

′(x , t)− G [f ]
)

= 0

which is exactly what we obtained by minimizing the error defined using the L2

norm.

• Hence, we can say that the DG scheme only determines the solution in the
weak-sense, that is, all functions that are weakly equal to DG representation
can be potentially interpreted as the actual solution.

• This allows a powerful way to construct schemes with desirable properties by
recovering weakly-equal functions using the DG representations.
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Example of recovery: Exponential recovery in a cell

• Consider we have a linear representation of the particle distribution
function fh(x) = f0 + xf1 in a cell.

• We can use this to reconstruct an exponential function that has
the desirable property that it is positive everywhere in the cell.
That is, we want to find

exp(g0 + g1x)
.

= f0 + xf1

• This will lead to a coupled set of nonlinear equations to determine
g0 and g1

• Note that this process is not always possible: we need f0 > 0 as
well as the condition |f1| ≤ 3f0. Otherwise, the fh is not realizable
(i.e. there is no positive distribution function with the same
moments as fh).
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Example of recovery: Exponential recovery in a cell

Figure: Recovery of exponential function (black) from linear function (red).
Left plot is for f0 = 1, f1 = 1 and right for f0 = 1 and f1 = 2.
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We use DG for both Vlasov and Maxwell equations

Start from Vlasov equation written as advection equation in
phase-space:

∂fs
∂t

+∇z · (αfs) = 0

where advection velocity is given by α = (v, q/m(E + v × B)).

To derive the semi-discrete Vlasov equation using a discontinuous
Galerkin algorithm, we introduce phase-space basis functions w(z),
and derive the discrete scheme:∫

Kj

w
∂fh
∂t

dz +

∮
∂Kj

w−n · F̂ dS −
∫
Kj

∇zw ·αhfh dz = 0
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We use DG for both Vlasov and Maxwell equations

Multiply Maxwell equations by basis ϕ and integrate over a cell. We have
terms like ∫

Ωj

ϕ∇× E︸ ︷︷ ︸
∇×(ϕE)−∇ϕ×E

d3x.

Gauss law can be used to convert one volume integral into a surface integral∫
Ωj

∇× (ϕE) d3x =

∮
∂Ωj

ds× (ϕE)

Using these expressions we can now write the discrete weak-form of Maxwell
equations as∫

Ωj

ϕ
∂Bh

∂t
d3x +

∮
∂Ωj

ds× (ϕ−Êh)−
∫

Ωj

∇ϕ× Eh d
3x = 0

ε0µ0

∫
Ωj

ϕ
∂Eh

∂t
d3x−

∮
∂Ωj

ds× (ϕ−B̂h) +

∫
Ωj

∇ϕ× Bh d
3x = −µ0

∫
Ωj

ϕJh d
3x.
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Is energy conserved? Are there any constraints?

Answer: Yes! If one is careful. We want to check if

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz +

d

dt

∑
j

∫
Ωj

(
ε0

2
|Eh|2 +

1

2µ0
|Bh|2

)
d3x = 0

Proposition

If central-fluxes are used for Maxwell equations, and if |v|2 is projected to
the approximation space, the semi-discrete scheme conserves total (particles
plus field) energy exactly.

The proof is rather complicated, and needs careful analysis of the discrete
equations (See Juno et. al. JCP 2018)

Remark

If upwind fluxes are used for Maxwell equations, the total energy will decay
monotonically. Note that the energy conservation does not depend on the
fluxes used to evolve Vlasov equation.
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Entropy increases monotonically

In order to correctly understand entropy production, one needs to
ensure that discrete scheme either maintains or increase entropy in
the collisionless case. We can show

Proposition

If the discrete distribution function fh remains positive definite, then
the discrete scheme grows the discrete entropy monotonically∑

j

d

dt

∫
Kj

−fh ln(fh) ≥ 0

This is a simple corollary of the conservation/decay of f 2
h .
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Discretizing full-F Fokker-Planck operators

We have implemented a full-F nonlinear Fokker-Planck operator written in the
Rosenbluth form (

∂f

∂t

)
c

= −∇ · (af ) +
1

2
∇ · [∇ · (Df )] .

Here a = ∇h is the drag velocity and D = ∇∇g the (symmetric) diffusion tensor.

• The Rosenbluth potentials h and g are determined from ∇2h = f and ∇2g = h.

• Often, one can avoid the Poisson solves and approximate the potentials directly
as

h = −ν
(

1

2
v2 − v · u

)
g = νv 2

thv
2

This leads to the Dougherty or Lenard-Bernstein operator (D-LBO). See H. et.
al. arxiv:1903.08062.

• Other approximations are also possible: solve Poisson equations for Rosenbluth
potentials using spherical harmonics, retaining only a few (even one) term.
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Full-F Fokker-Planck operators: conservation

We can show that momentum and energy conservation is obtained (as for
any good collision operator) if the following relations are satisfied∫ ∞

−∞
af d3v = 0.

for momentum conservation, and∫ ∞
−∞

(
a · v +

1

2
Tr(D)

)
f d3v = 0.

for energy conservation.

We must ensure that the discrete scheme satisfies these relations to ensure
discrete momentum and energy conservation. In general, we must directly
incorporate these relations in constructing the scheme. They can’t be
automatically satisfied otherwise.
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Full-F Fokker-Planck operators: DG scheme

Two key tricks to ensure momentum and energy conservation:

• To derive weak-form of FPO we must to integrate by parts twice for the
diffusion term

• To solve for the Rosenbluth potentials we must use a DG representation
to solve a constrained form of Poisson equations. (Not sure of this.
Perhaps there is a way to use standard FEM based Poisson solvers too).

The weak-form is∫
Kj

w
∂f

∂t
dv3 = −

∮
∂Kj

w−(af ) · ds +

∫
Kj

∇w · af dv3

+
1

2

∮
∂Kj

[
w−∇ · (Df )−∇w− ·Df

]
· ds +

1

2

∫
Kj

(∇∇w) : Df dv3

We need to evaluate first and second derivatives of discontinuous functions
at cell interfaces. How to do this?
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Lets revisit weak-equality and recovery

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk , f − g) = 0

for all k = 1, . . . ,N. We denote weak equality by

f
.

= g .

Recall that the DG solution is only a representation of the solution
and not the solution itself. Hence, we can consider the following
“inverse” problem: given a discontinuous solution across two cells, is
it possible to recover a continuous representation that can then be
used in the above weak-form?
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Use weak-equality to recover continuous function

Figure: Given piecewise linear representation (black) we want to recover the
continuous function (red) such that moments of recovered and linear
representation are the same in the respective cells.
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Use weak-equality to recover continuous function

• Consider recovering f̂ on the interval I = [−1, 1], from a function, f , which has
a single discontinuity at x = 0.

• Choose some function spaces PL and PR on the interval IL = [−1, 0] and
IR = [0, 1] respectively.

• Reconstruct a continuous function f̂ such that

f̂
.

= fL x ∈ IL on PL

f̂
.

= fR x ∈ IR on PR .

where f = fL for x ∈ IL and f = fR for x ∈ IR .

• To determine f̂ , use the fact that given 2N pieces of information, where N is
the number of basis functions in PL,R , we can construct a polynomial of
maximum order 2N − 1. We can hence write

f̂ (x) =
2N−1∑
m=0

f̂mx
m.

Plugging this into the weak-equality relations gives a linear system for f̂m.
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Use recovered function in weak-form

Once we have determined f̂ we can use this in the discrete weak-form of the
diffusion equation: ∫

Ij

ϕft dx = ϕf̂x

∣∣∣∣xj+1/2

xj−1/2

−
∫
Ij

ϕx fx dx .

Note that now as f̂ is continuous at the cell interface there is no issue in
computing its derivative. We can, in fact, do a second integration by parts
to get another discrete weak-form∫

Ij

ϕft dx = (ϕf̂x − ϕx f̂ )

∣∣∣∣xj+1/2

xj−1/2

+

∫
Ij

ϕxx f dx .

Recall the second integration by parts is needed to get momentum and
energy conservation for the FPO. Use recovery also to solve Poisson
equations: Rosenbluth potentials need a discontinuous representation!
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Another look at computing numerical fluxes

• To design a scheme for the diffusion equation we used a recovery
procedure to compute the edge values and slopes

• Can this process be used to compute numerical fluxes for use in
updating advection equations? Instead of using upwinding or
central fluxes, we can use recovered polynomial at each cell
interface to compute numerical fluxes.

This leads to a differential form of the DG scheme that is very simply
written as (for the linear advection equation)(

ψk , ft
)

= −
(
ψk , f̂x

)
.

Potentially much more accurate scheme for smooth solution. Likely
leads to the most accurate possible DG scheme using a three-point
stencil.
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Recovery based DG scheme is surprisingly accurate

Figure: An EM wave propagated 10 periods using recovery DG scheme
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Recovery based DG scheme is surprisingly accurate

Figure: An EM wave propagated 100 periods using recovery DG scheme
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Recovery based DG scheme is surprisingly accurate

Figure: An EM wave propagated 1000 periods using recovery DG scheme
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Recovery based DG scheme is surprisingly accurate

Figure: An EM wave propagated 10000 periods using recovery DG scheme
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To give and not to count the cost ...

Question: Are continuum schemes competitive compared to PIC schemes in terms
of cost for a given accuracy?

I am not completely sure and it probably depends on what you are looking for.

In general, if one is interested in detailed phase-space structure of distribution
function, then continuum scheme can be very efficient as the lack of noise allows
interpretation of data (for turbulence, for example) easier.

Our recent algorithmic innovations in constructing special basis sets and using
CAS generated code has shown that continuum schemes can be made to scale as
number of basis functions in phase-space. (In standard DG, the schemes usually
scale quadratically or cubially with number of basis functions!). This is potentially
a game-changer as efficiency improves dramatically (at the cost of more complex
code (however, no one really needs to read the code!)).
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Conclusion and Future Work

• We have developed a continuum scheme to directly discretize the
Vlasov-Maxwell equations as a PDE in phase-space using the discontinuous
Galerkin scheme

• Our scheme conserves total energy exactly, and has the correct sign for entropy
production. Very delicate features in the solutions (like Landau resonances) can
be recovered.

• A scheme that conserves momentum and energy for collision terms has been
developed. Extensions to full nonlinear Fokker-Planck operator is underway

• The concept of recovery can potentially lead to even more accurate schemes;
perhaps the optimium DG scheme with a three-cell stencil?

• Present algorithmic work is focussed on moving to GPUs, improving parallel
performance; using recovery for collisionless terms, ...

• A large number of physics studies are underway.

32 / 32 Gkyell Continuum Kinetics A. Hakim


