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Fluctunation Dynamo in

Weakly Collisional Plasmas

(or, I get by with help from my little friends)
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Abell 2199 - - 1 Galaxy Clusters

. R\~ 10 Mg
~200kpe . in ~1 Mpc

14% thermal plasma
1T ~ 1-10 keV
n~ 107*10"! cn™?




1on Larmor orbit 1ion Larmor orbit

it B~10-18 G 200 kpc now, with B ~ uG
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Why;) hOVVD dyn AIMO

T 1/2 B —1
o (1 keV> (106 G> Hpe

B o
Qz’ ~ (10—6 G) 1min

(ton Larmor orbit ~ size of Jupiter) (B = 8mnT/ B2 ~ 102—4)




One—-component velocity amplitude (km s-!)
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Perseus cluster
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Wavenumber (kpc!)
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ICM 1is turbulent

Hitomi, before its death:
#=164 =10 km/s
in Perseus at ~50 kpc

Note:

B n —1/2
— 154 ( ) k
oA (10 uG) 0.02 cm—3 be

likely not a coincidencel!!!

(~10 uG is typical B measurement from RM in core;
B o« #1/2 inferred in Coma: Bonafede ¢z a/. 2010)



it is then natural to attribute intracluster magnetic field to

the fluctuation (“turbulent”) dynamo
(Batchelor 1950; Kazantsev 1967; Zel’dovich et al. 1984; Childress & Gilbert 1995),

whereby a succession of random velocity shears stretches the field
and leads on the average to its growth to dynamical strengths.

dln B 73 magnetic energy grows in a 3D,
dt bb:Vu smooth, chaotic velocity field
—2/3
uENgl/B N din B Ng f_,/ NgRel/Q
dt L \ L L

depends on the material properties ot the host plasma



1)

2)

3)

Small-scale MHD dynamo evolution at Pm > 1

kinematic

no feedback from B on #; exponential growth

Kazantsev £3/2 spectrum, peaking at £,
development of folded structure

nonlinear

tension affects viscous-scale eddies:

B-VB~u-Vu~u?/l,

slower, larger-scale eddies take over stretching (g |
secular growth (B2) (Sch02&04, Cho+09, Beresnyak12) .. |f "

saturation at {B2) ~ {#2)
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[ssues with fluctuation dynamo in the ICM:

* ICM is well magnetized, even at f ~ 1022; implies that viscous
transport 1s anisotropic:

Amfp Pm\ /2
~ 0.1 —
Pi B;

RGH = M

* ICM is weakly collisional, 1.e., not rigorously a fluid on all but
the largest scales. Deviations from LTE expected. Why?




can’t move a plasma differentially without stretching/compressing B

oy, U-conservation implies pressure anisotropy:
S~ SSiop ® .-®._ ®
) T Bl ®x,--®~~\\® B
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p 0
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appreciable dynamo growth 1s zzzpossible

it u 1s conserved; there’s just not
enough free energy (Helander ez a/. 2016)

implies (at least) two things:
mitrrot

1) u must be broken, e.g., by kinetic
instabilities that feed off p, # p,

2) no “kinematic” phase... B, no matter
how weak, influences the flow



fastest stretching motions at parallel-viscous scale

(recall dlnB/dt = bb:Vu)
parallel-viscous scale set by
etfective scattering rate of

E(k) kinetic instabilities:
A mirror and firehose
\\ S < _ 9 , a “Say hello to my little friends”
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fastest stretching motions at parallel-viscous scale

(recall dln B/dt = bb:Vu)
parallel-viscous scale set by
etfective scattering rate of

E(k) kinetic instabilities:
0 mirror and firehose
\\ ~ - o “Say hello to my little friends”
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the faster the instabilities scatter, the faster is the dynamo



namely, if firehose/mirror instabilities yield Ve large enough

to keep Ap tightly at marginal mirror/firehose instability
(which can occur in ICM for B = n(5), then

4
Re J and g” vise Ui‘
H’ - e ——
” , € ,Ui L U3

M\* n T \°/ B \*
— Rey g ~ 103 [ —— =
Clleft (0.3) (103 Cm3> (108 K) (1 uG)

supplants Coulomb-collision Rej (=10) tor

e - /4, o A7 3/4 I _1/4
~ 21073 em-3 5 keV / \ 0.2 100 kpe

so, at least until the dynamo is approx. saturated,
kinetic “collisionality” > Coulomb collisionality




If viscosity is regulated by ion-Larmor-scale instabilities,
then dynamo was much faster in the past!

But, for 1 aG = B = nG, the v required to keep Ap

marginally firehose/mirror unstable is > €2,
This can’t be achieved.



motivates the following idea of 3 dynamo regimes:

parallel Reynolds vs time field strength vs time
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explosive growth? predicts ~nG fields in cosmologically short time.



We studied tluctuation dynamo
in collisionless and weakly collisional plasmas
using hybrid-kinetic particle-in-cell simulations,
Braginskii-MHD simulations, and
analytic modeling.




hybrid-kinetic particle-in-cell simulations using Pegasus

—
|y dfi Zie v F 0 f; . .
e N / +v-Vfi+ (E + — X B) + —1 - S 0 + fluid equation for massless,
| | c‘% my C Ty (% .
| ' 95 isothermal electrons
g e 5 —cV X E + hyper-resistivity
zero-net-flux magnetic field at the largest box scales, - —
subject to time-correlated incompressible, subsonic stirring .
g
A
16 ) 32 |
M =~ 0.16
y
Bi =10°
I I I I > k.
L~ pi kg T



St-Onge & Kunz, 2018 Ap]L.



St-Onge & Kunz, 2018 Ap]L.



(PL/Pj—1)

A\ =

0.3

0.2

adiabatic evolution produces pressure anisotropy...

(

adiabatic:
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(PL/Pj—1)

A\ =

...which is relaxed by firehose/mirror instabilities.

o




mirror instability observed
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also seen 1n Francois’ plasma dynamo simulations



at even higher resolution...

1008 N




kinetic energy

time evolution
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(d) kiﬁetic energy

an—1 :
::8_2 “rapid growth phase”
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kinetic energy

“rapid growth phase”

production of p. aniso.
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slight regulation of
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kinetic energy

“rapid growth phase”

production of p. aniso.
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exponential growth,
folded fields, like

Pm >» 1 dynamo!
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throughout exponential-growth phase, p. aniso. knows about thresholds

£
ks
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&
q
Y F 5
—0.3F i t/tcorr — + t/tcorr = 18 3
10 102 104 109 100 102 104 10°
oth Byji

firehose /mirror instabilities limit
(though not completely)

departures from thermodynamic equilibrium



result is that collisionless plasma behaves like a Pm » 1 fluid

MHD (Pm = 500) Kinetic

(take off your glasses)




0.8

0.6 |

0.4

0.2

but, the rate of strain is anisotropic w.r.t. B

T r v T | Y r T Y 1

(§:8)1/2L /21 (9u?)1/?

weakly collisional, magnetized plasma (Braginskii 1965)

| (b-S%)'/2L/2n(3u*) /> 7
(BB S)V2L 2 (u2) /2
0 5 10 15 20
t/tmrr,f

certain motions are preferred over others:

viscosity 1s anisotropic, as if it were a

total rate of strain

{ parallel rate of strain



shell-averaged energy spectra

kmema,tlc phase sa,t ur a,t ed btate
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we did a separate run that reached nonlinear and saturation regimes
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problem for testing explosive growth:

no room between “kinetic magnetized”
and “fluid magnetized” regimes;
explosive growth is predicted to onset
in this run just as saturation occurs

— (B2) ~ {#?)

- / collisionality ~ shear X 5

| implies tight regulation of p. aniso.
which is indeed seen
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Braginskii-MHD simulations using Snoopy

large parameter study with
hall-wall Iimited,
unlimited, and
“soft-wall”’ limited
closures on viscous stress

Oth-order results:
- hard-wall limited Braginskii
looks like Pm = 1 MHD

(see also Santos-Lima et al. 2014,
who used CGL + anomalous
collisionality motivated by th/mr)

- unlimited Braginskii looks like
saturated state of Pm = 1 MHD

(B* — Ap x d,B? in tension)




example of “hard-wall limited Braginskii looks like Pm = 1 MHD”

3-pt 2nd-order SFs

spectral anisotropy

kinematic phase

saturated state
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3-pt 2nd-order SFs

spectral anisotropy

example of “unlimited Braginskii looks like saturated MHD”

kinematic phase

saturated state
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another example of “unlimited Braginskii looks like saturated MHD”

rate-of-strain eigenvectors projected onto local field direction
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calculate rate-of-strain tensor from sims,
find its elgenvectors and eigenvalues,
project eigenvectors onto magnetic-field direction b.

find a suppressed parallel ROS, bb:Vu .

modified Kazantsev-Kraichnan model for magnetized plasma dynamo

(Ww'(t,r)) =0, @tr)E,r))=6t—t)s(r—7r")

use a rate-of-strain tensor that knows about magnetic-tfield direction:
’fij(k) — "@(iSO)(ka ‘f‘)((si‘j — ]%ziﬂg)
+ k@) (o [€)) (007 + Ehiky — Eb'k; — k)

£=k-b

(a la Schekochihin ¢ a/ 2002, 2004 for sat. MHD)



after some effort, can derive several statistics of the magnetic tield,

e.g., 1ts 1D spectrum M(£):

oM VL 0 2 0
T { ‘k 1+40L+1‘ld\4

—|—2‘+0]_ ’YJ_M—QTIICZM

ratio of stretching to mixing
(influences growth rate
and spectral index)

modified Kazantsev-Kraichnan model works very well
at describing both hybrid-kinetic and Braginskii simulations



relative
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M(k) slope
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in particular, unlimited Braginskii dynamo 1s not viable 1f
mixing-to-stretching ratio is too large (Re1/Rey))

no time to go through it here in detail, but
ratio ot stretching and mixing is the key parameter

Re,Pm = Rej, ReL, Pmj

(related to Zel'dovich anti-dynamo thm + Squire’s magneto-immutability)
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some take-aways on plasma dynamo

Turbulent dynamo works 1n a collisionless plasma (see also Rincon ez a/. 2016),
a non-trivial statement! Needs help from kinetic instabilities (little friends).
Can amplify B to dynamically important strengths.

In many respects, collisionless magnetized plasma behaves as though it were
weakly collisional, magnetized fluid with Rey ~ 1, Re; > 1and Pmj > 1

...because firehose/mirror easily triggered, break i, and limit departures
from LTE; wave-particle interactions supplant particle-particle interactions

Hybrid-kinetic and Braginskii-MHD simulations performed and analyzed:
St-Onge & Kunz 2018, ApJL; St-Onge, Kunz, Squire, Schekochihin 2019

Some aspects of unlimited Braginskii match behavior in kinetic runs
(hard-wall pressure anisotropy limiters might not always be a good closure)

possibility of explosive growth up to ~nG fields in ICM (in prep.)

now Investigating impact ot tearing & reconnection on Pm = 1 dynamo

w/ Alex Schekochihin and Alisa Galishnikova



quick advertisement. ..
Alt & Kunz, 2019, JPP Letters, 85, 764850101

LETTER

Onset of magnetic reconnection in a
collisionless, high-8 plasma

Andrew Alt"* and Matthew W. Kunz'*

< >

B rec I

oF (not to scale)

Consider a thinning current sheet
in a collisionless, magnetized plasma

B will increase in inflowing
fluid elements, driving P1 > P

mirrors will rapidly grow and
saturate above 1on-Larmor scales,

changing A'(£)

tearing modes grow and disrupt
CS formation earlier than

they would otherwise.
quantitative theory worked

out for this process






