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CONTEXT — BASIC THEORY — SIMULATIONS

PLASMA PARAMETERS R

Dynamically weak field P thermal
B = ~ 100 M ~ 0.3

Subsonic turbulence P B
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e.g., Rosinet al. 2010, Hydra A

PLASMA PARAMETERS Zhuraeva st . 2014

Dynamically weak field ,B P thermal _ 100

M~ 0.3

Subsonic turbulence P B
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Particles strongly L 101!
magnetized U, .
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PLASMA PARAMETERS " hroovaetal 2014

Dynamically weak field P t

h 1
f=———= 100 M~ 0.3
Subsonic turbulence P B
Particles strongly & - 1011
magnetized U, .
Weakly Re ~ 60 Amfp 1
collisional Pm ~ 1026 L ~ 120

GENERAL APPLICATION TO.

black-hole accretion, solar wind, hot ionized medium, high-z halos?



CONTEXT — BASIC THEORY — SIMULATIONS

HOW DOES THIS PLASMA BEHAVE?

Is it well described by normal

| Du=—-p 'VP+p \JxB+..?
(magneto) hydrodynamics?

What determines its viscosity, resistivity, heat transport etc.? Re = 60?
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OUTLINE - MAGNETO-IMMUTABLILITY

Focus on fluid-scale effects, not the kinetic micro-physics

» The dynamical effect of pressure anisotropy
» Generation of pressure anisotropy
» A simple prediction — shear-Alfvén wave interruption

» How the plasma avoids this — magneto-immutability

» Simulations (Braginskii MHD)

» Driven Alfvénic turbulence

» The MRI



The dynamical effect of pressure anisotropy

Generation of pressure anisotropy
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DIFFERENCE COMPARED TO MHD

» Context: Kulsrud’s kinetic MHD

Expand kinetic equation in p;/L <1

Obtain MHD-like equation, with p,, p)
obtained from drift kinetic equation
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DIFFERENCE COMPARED TO MHD

» Context: Kulsrud’s kinetic MHD

Expand kinetic equation in p;/L < 1 p. 0 0
Obtain MHD-like equation, with p,, p) P = 0 pr O
obtained from drift kinetic equation 00 p

MHD Du = -V (p+B?%2)+V - (bbB?)

dl

Ap=p, —pj

V] V1
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» Single particle motion

2
muv-

2B

conserved

/’L:
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» Single particle motion
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muv-
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» So, without collisions
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» Single particle motion

2

U = T;LUBL conserved
> So, without collisions | B Ap
B Ap
» More formally (CGL)
dAp _q 1 dB (3 )1 dp
at 0B ar -~ VPI T PYw

A\ A

+V - [b(qL —q)] =3¢,V -b—3v,Ap
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» Single particle motion
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» So, without collisions

B
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» More formally (CGL)

dAp 1 dB
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» Single particle motion
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muv4
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conserved
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PERTURB MAGNETIC FIELD?
0B*  dAp

_— NN\

B% Po
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PERTURB MAGNETIC FIELD?
0B*  0Ap deuw =+ V- [bb(B* + Ap)]
B~ 7\

Po SB% ~ B0 Ap
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PERTURB MAGNETIC FIELD?
@ dAD Oy = -+ V - [bb(B2 4+ Ap)]
B Po 2/ —1 \
0B° ~ 7 0Ap

Momentum stress due to Ap ~ [*magnetic pressure

MHD completely wrong?

k-1

Inertial
range

B-s513

Energy-containing

scale x

Energy flow

Even though
L > p;

Ion gyroscale

Dissipation
range

Energy/Wave number

Wave number
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CONTEXT — BASIC THEORY — SIMULATIONS

KINETIC MICRO-INSTABILITIES

» The plasma responds at Fy ), ~ Fy e, (When |Ap|[/p ~ B~ by
generating micro-instabilities (firehose, mirror)

» These help regulate the growth of | Ap |

. Firehose

0.4
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KINETIC MICRO-INSTABILITIES

» The plasma responds at Fy ), ~ Fy e, (When |Ap|[/p ~ B~ by
generating micro-instabilities (firehose, mirror)

» These help regulate the growth of | Ap |
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The dynamical effect of pressure anisotropy
Generation of pressure anisotropy
» A simple prediction — shear-Alfvén wave interruption

» How the plasma avoids this — magneto-immutability
Simulations (Braginskii MHD)

Driven Alfvénic turbulence

The MRI



Because of shear-Alfvén waves
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Squire+ ApJL 2016
Squire+ NJP 2017

CONTEXT — BASIC THEORY — SIMULATIONS

V4

ALFVEN-WAVE INTERRUPTION

In a linearly polarized wave
dB

dt
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In a linearly polarized wave
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Firehose limit

THE WAVE HAS REMOVED ITS OWN RESTORING FORCE
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CONTEXT — BASIC THEORY — SIMULATIONS

V4

ALFVEN-WAVE INTERRUPTION

In a linearly polarized wave
dB

IF Ap = — B?

Firehose limit

THE WAVE HAS REMOVED ITS OWN RESTORING FORCE

2 ,6_1/2

5B,
B

B o

U

C

oB, > 0 4
By

This occurs if



Details depend on regime

In Braginskiit MHD,
Ap ~ 200 - Vu
VC
wave decays over timescale

tdecay > Ty
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In Braginskiit MHD,
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VC
wave decays over timescale
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CONTEXT — — SIMULATIONS

Is turbulence damped 1n a weakly
collisional plasma with
WA

5BJ— > _ﬁ—1/2 ?
BO Ve




CONTEXT — — SIMULATIONS Squire+ JPP 2019

MAGNETO-IMMUTABILITY

» Due to F,,, plasma organizes itself to avoid motions that
generate large bb:Vu and Ap

A 1 dB 1 DB -
y Ap X &bb:Vu ~ Po (from ~ bb:Vu)
U, V. B dt B Dt

so these motions also minimize changes to B = | B |
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MAGNETO-IMMUTABILITY

» Due to F,,, plasma organizes itself to avoid motions that
generate large bb:Vu and Ap

A 1 dB 1 DB -
y Ap ~ &bb:Vu ~ Po (from ~ bb:Vu)
U, V. B dt B Dt

so these motions also minimize changes to B = | B |

We call this effect
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INCOMPRESSIBILITY

Du=-Vp+ ...
drives flows away from large p

Dip=—pV-u

) 4

p increases whenV -u < (

Flow does not support
motions with V - u # 0

Very effective when p is large

Incompressible

MAGNETO-IMMUTABILITY

Du=V - (bbAD) + ...
drives anisotropic flows
towards large positive Ap

DAp = 3p.bb:Vu + ...

) 4

Ap increases when bb:Vu >0

Flow does not support
motions with bb:Vu # 0

1 DB .. _
————=bb:Vu—-V -u

B Dt .
so changes to B minimized

“Magneto-immutable”
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Simulations (Braginskii MHD)
Driven Alfvénic turbulence

The MRI
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SIMULATIONS — ALFVENIC TURBULENCE

» Standard, driven, critically balanced MHD turbulence with
oB, DA _1 C e :
— 2| —p (large Braginskii viscosity, ltg.,, S 1).

Ny

BO 2%

» Incompressible turbulence works fine, does magneto-immutable
turbulence?



Standard, driven, critically balanced MHD turbulence with

5BJ_ 2 1/2 . ve e .

N — )~ '~ (large Braginskii viscosity, ItBrag < 1).
0 Ve

Incompressible turbulence works fine, does magneto-immutable
turbulence?
a)

ItBrag ~ 1

ItBrag 7 ]_/].6
Ttpras &~ 1/64




But the fluid motions themselves are quite dift

Fully turbulent

t=4TA




Nonlinear analogue to circularly polarized wave

Magneto-immutable

Fully turbulent

t=4TA
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» Low-mach-number flows minimize V - u

» Similarly, magneto-immutable flows minimize bb: Vu



Low-mach-number flows minimize V - u

Similarly, magneto-immutable flows minimize bb:Vu

Firehose limi{A /Mirror limit

s \VirTOT limited simulation

Mirror and firehose
limited simulation

A7bb : Vu/(B?2)




Low-mach-number flows minimize V - u

Similarly, magneto-immutable flows minimize bb:Vu

Firehose limi{A /Mirror limit

947, of m——— \irror limited simulation

. Volume ,
\ | Mirror and firehose
Z 97 Of R limited simulation

volume

02 0 0.2
J/
MHD ~
d
)
// ItB

1 -

/16
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rag,--’
0'.“ |

-5 0
47bb : Vu/(B?)
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CONTEXT — BASIC THEORY — SIMULATIONS Kempski+ MNRAS 2019 ;

MRI

» In MRI turbulence, background shear drives
mean Ap, x bb: VU,




SIMULATIONS Kempski+ MNRAS 2019 & -a

MRI

» In MRI turbulence, background shear drives
mean Apy x bb:V U,

» The turbulence
minimizes
the total Ap by
cancelling bb : V U,
with bb : Vu



AM transport due to Ap

Kunz+2016

| Sharma+2007 4

¢ Composite Sim.
¢  Full Sim.

o |

Kempski+ MNRAS 2019

Mean Ap

3000 4500 10500
Re

21000

¢ Composite Sim.
¢ Full Sim.

Kunz+2016

3000 4500 10500 21000
Re

Relation to kinetics (Kunz+ 2016, Hoshino 2015) remains unclear




Turbulence becomes

AM transport due to Ap

Kempski+ MNRAS 2019

stmilar to MHD as isotropic Re increases

Mean Ap

| Sharma+2007

Kunz+2016
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¢ Composite Sim.
¢  Full Sim.

¢ Composite Sim.
¢ Full Sim.

Kunz+2016

o |

3000 4500 10500
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21000 3000 4500 10500 21000
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Relation to kinetics (Kunz+ 2016, Hoshino 2015) remains unclear




Turbulence becomes

AM transport due to Ap

Kunz+2016

Small scales better
| Sharma+2007 4 able to cancel out
large scales

o

¢ Composite Sim.
¢  Full Sim.

Kempski+ MNRAS 2019

stmilar to MHD as isotropic Re increases

Mean Ap

o |

3000 4500 10500 21000

Re

¢ Composite Sim.
¢ Full Sim.

Kunz+2016

3000 4500 10500 21000
Re

Relation to kinetics (Kunz+ 2016, Hoshino 2015) remains unclear




Squire+ JPP 2019

CONCLUSIONS Kempski+ MNRAS 2019

The dynamical feedback of Ap on flow occurs around
the same point that mirror/firehose are excited

This feedback tends to reduce Ap, and consequently,
variations in |B |

Braginskii MHD simulations show that “magneto-
immutable” turbulence is very similar to MHD,

despite minimizing bb:Vu

More work needed to understand collisionless regime







