MAGNETO-IMMUTABLE TURBULENCE IN WEAKLY COLLISIONAL PLASMAS

KITP plasmas — September 2019

JONATHAN SQUIRE - UNIVERSITY OF OTAGO, NEW ZEALAND

ALONG WITH: E. Quataert, A. Schekochihin, M. Kunz, P. Kempskii

QUESTION: WHAT GOVERNS THE LARGE-SCALE DYNAMICS OF THE INTRA-CLUSTER-MEDIUM PLASMA? X-Ray NASA/CXC/CFA/M.MARKEVITCH ET AL.

e.g., Rosin et al. 2010, Hydra A Zhuravleva et al. 2014

Dynamically weak field Subsonic turbulence

$$\beta = \frac{P_{\text{thermal}}}{P_R} \approx 100 \qquad \mathcal{M} \approx 0.3$$

e.g., Rosin et al. 2010, Hydra A Zhuravleva et al. 2014

Dynamically weak field Subsonic turbulence

$$\beta = \frac{P_{\text{thermal}}}{P_B} \approx 100$$

 $\mathcal{M} \approx 0.3$

Particles strongly magnetized

$$\frac{\Omega_i}{\nu_{c,i}} \sim 10^{11}$$

e.g., Rosin et al. 2010, Hydra A Zhuravleva et al. 2014

Dynamically weak field Subsonic turbulence

$$\beta = \frac{P_{\text{thermal}}}{P_R} \approx 100$$

 $\mathcal{M} \approx 0.3$

Particles strongly magnetized

$$\frac{\Omega_i}{\nu_{c,i}} \sim 10^{11}$$

Weakly collisional

Re
$$\approx 60$$

Pm $\sim 10^{26}$

$$\frac{\lambda_{\rm mfp}}{L} \approx \frac{1}{120}$$

e.g., Rosin et al. 2010, Hydra A Zhuravleva et al. 2014

Dynamically weak field Subsonic turbulence

$$\beta = \frac{P_{\text{thermal}}}{P_R} \approx 100$$

$$\mathcal{M} \approx 0.3$$

Particles strongly magnetized

$$\frac{\Omega_i}{\nu_{c,i}} \sim 10^{11}$$

Weakly collisional

Re
$$\approx 60$$

Pm $\sim 10^{26}$

$$\frac{\lambda_{\mathrm{mfp}}}{L} \approx \frac{1}{120}$$

GENERAL APPLICATION TO:

black-hole accretion, solar wind, hot ionized medium, high-z halos?

HOW DOES THIS PLASMA BEHAVE?

Is it well described by normal (magneto) hydrodynamics?

$$D_t \boldsymbol{u} = -\rho^{-1} \nabla P + \rho^{-1} \boldsymbol{J} \times \boldsymbol{B} + \dots?$$

What determines its viscosity, resistivity, heat transport etc.? Re = 60?

VS.

Credit: Universität Duisburg-Essen

Credit: University of Queensland

HOW DOES THIS PLASMA BEHAVE?

Is it well described by normal (magneto) hydrodynamics?

$$D_t \boldsymbol{u} = -\rho^{-1} \nabla P + \rho^{-1} \boldsymbol{J} \times \boldsymbol{B} + \dots?$$

What determines its viscosity, resistivity, heat transport etc.? Re = 60?

VS.

Credit: Universität Duisburg-Essen

Credit: University of Queensland

HOW DOES THIS PLASMA BEHAVE?

Is it well described by normal (magneto) hydrodynamics?

$$D_t \boldsymbol{u} = -\rho^{-1} \nabla P + \rho^{-1} \boldsymbol{J} \times \boldsymbol{B} + \dots?$$

What determines its viscosity, resistivity, heat transport etc.? Re = 60?

VS.

Credit: Universität Duisburg-Essen

Credit: University of Queensland

OUTLINE - MAGNETO-IMMUTABLILITY

Focus on fluid-scale effects, not the kinetic micro-physics

- ▶ The dynamical effect of pressure anisotropy
 - Generation of pressure anisotropy
 - A simple prediction shear-Alfvén wave interruption
 - How the plasma avoids this magneto-immutability
- Simulations (Braginskii MHD)
 - Driven Alfvénic turbulence
 - The MRI

OUTLINE - MAGNETO-IMMUTABLILITY

Focus on fluid-scale effects, not the kinetic micro-physics

- The dynamical effect of pressure anisotropy
 - Generation of pressure anisotropy
 - A simple prediction shear-Alfvén wave interruption
 - ▶ How the plasma avoids this magneto-immutability
- Simulations (Braginskii MHD)
 - Driven Alfvénic turbulence
 - The MRI

DIFFERENCE COMPARED TO MHD

➤ Context: Kulsrud's kinetic MHD

Expand kinetic equation in $\rho_i/L \ll 1$ Obtain MHD-like equation, with p_\perp, p_\parallel obtained from drift kinetic equation

$$P = \left(egin{array}{ccc} p_{\perp} & 0 & 0 \\ 0 & p_{\perp} & 0 \\ 0 & 0 & p_{\parallel} \end{array}
ight)$$

DIFFERENCE COMPARED TO MHD

Context: Kulsrud's kinetic MHD

Expand kinetic equation in $\rho_i/L \ll 1$ Obtain MHD-like equation, with p_\perp, p_\parallel obtained from drift kinetic equation

$$P = \begin{pmatrix} p_{\perp} & 0 & 0 \\ 0 & p_{\perp} & 0 \\ 0 & 0 & p_{\parallel} \end{pmatrix}$$

MHD
$$D_t \boldsymbol{u} = -\nabla(p + B^2/2) + \nabla \cdot (\hat{\boldsymbol{b}}\hat{\boldsymbol{b}}B^2)$$

Kinetic MHD
$$D_t \mathbf{u} = -\nabla(p_{\perp} + B^2/2) + \nabla \cdot [\hat{\mathbf{b}}\hat{\mathbf{b}}(B^2 + \Delta p)]$$

$$\mu = \frac{mv_{\perp}^2}{2B} \quad {\it conserved}$$

$$\mu = rac{m v_{\perp}^2}{2B}$$
 conserved

So, without collisions

$$\mu = rac{m v_{\perp}^2}{2B}$$
 conserved

> So, without collisions
$$|B|$$

$$\mu = rac{m v_{\perp}^2}{2B}$$
 conserved

➤ So, without collisions

$$|B| + \Delta p + \Delta p$$

$$|B| + \Delta p$$

$$\mu = \frac{mv_{\perp}^2}{2B} \quad \textit{conserved}$$

> So, without collisions
$$|B|$$
 Δp

More formally (CGL)

$$\begin{split} \frac{d\Delta p}{dt} = & 3p_0 \frac{1}{B} \frac{dB}{dt} - (3p_{\parallel} - p_{\perp}) \frac{1}{\rho} \frac{d\rho}{dt} \\ & + \nabla \cdot [\hat{\boldsymbol{b}}(q_{\perp} - q_{\parallel})] - 3q_{\perp} \nabla \cdot \hat{\boldsymbol{b}} - 3\nu_c \Delta p \end{split}$$

$$\mu = \frac{mv_{\perp}^2}{2B} \quad {\it conserved}$$

> So, without collisions
$$|B|$$
 Δp

More formally (CGL)

$$\begin{split} \frac{d\Delta p}{dt} = & 3p_0 \frac{1}{B} \frac{dB}{dt} - (3p_{\parallel} - p_{\perp}) \frac{1}{\rho} \frac{d\rho}{dt} \\ & + \nabla \cdot [\hat{\boldsymbol{b}}(q_{\perp} - q_{\parallel})] - 3q_{\perp} \nabla \cdot \hat{\boldsymbol{b}} - 3\nu_c \Delta p \end{split}$$

$$\mu = rac{m v_{\perp}^2}{2B}$$
 conserved

➤ So, without collisions

$$|B| + \Delta p + \Delta p$$

$$|B| + \Delta p + \Delta p$$

➤ More formally (CGL)

Formally (CGL)
$$\approx \hat{\boldsymbol{b}}\hat{\boldsymbol{b}}:\nabla\boldsymbol{u}$$

$$\frac{d\Delta p}{dt} = 3\boldsymbol{p}_0 \frac{1}{B} \frac{dB}{dt} + (3\boldsymbol{p}_{\parallel} + \boldsymbol{p}_{\perp}) \frac{1}{\rho} \frac{d\boldsymbol{p}}{dt}$$

$$+ \nabla \cdot [\hat{\boldsymbol{b}}(q_{\perp} - q_{\parallel})] - 3\boldsymbol{a}_{\perp} \nabla \cdot \hat{\boldsymbol{b}} - 3\nu_c \Delta \boldsymbol{p}$$

$$\mu = rac{m v_{\perp}^2}{2B}$$
 conserved

➤ So, without collisions

$$|B|$$
 Δp

➤ More formally (CGL)

From ally (CGL)
$$\approx \hat{\boldsymbol{b}}\hat{\boldsymbol{b}}: \nabla \boldsymbol{u}$$

$$\frac{d\Delta p}{dt} = 3\boldsymbol{p}_0 \frac{1}{B} \frac{dB}{dt} + (3\boldsymbol{p}_{\parallel} - \boldsymbol{p}_{\perp}) \frac{1}{\rho} \frac{d\rho}{dt}$$

$$+ \nabla \cdot [\hat{\boldsymbol{b}}(q_{\perp} - q_{\parallel})] - 3\boldsymbol{a}_{\perp} \nabla \cdot \hat{\boldsymbol{b}} - 3\nu_c \Delta p$$

Braginskii MHD $\Delta p \approx \frac{p_0}{\nu_c} \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u} \quad (\nu_{\text{Brag}} \approx p_0/\nu_c)$

PERTURB MAGNETIC FIELD?

$$\frac{\delta B^2}{B_0^2} \sim \frac{\delta \Delta p}{p_0}$$

PERTURB MAGNETIC FIELD?

$$\frac{\delta B^2}{B_0^2} \sim \frac{\delta \Delta p}{p_0}$$

$$\partial_t \boldsymbol{u} = \dots + \nabla \cdot [\hat{\boldsymbol{b}}\hat{\boldsymbol{b}}(B^2 + \Delta p)]$$

$$\delta B^2 \sim \beta^{-1} \delta \Delta p$$

PERTURB MAGNETIC FIELD?

$$\frac{\delta B^2}{B_0^2} \sim \frac{\delta \Delta p}{p_0} \qquad \frac{\partial_t \mathbf{u} = \dots + \nabla \cdot [\hat{\mathbf{b}}\hat{\mathbf{b}}(B^2 + \Delta p)]}{\delta B^2 \sim \beta^{-1} \delta \Delta p}$$

Momentum stress due to $\Delta p \sim \beta^*$ magnetic pressure MHD completely wrong?

Wave number

KINETIC MICRO-INSTABILITIES

- The plasma responds at $F_{\Delta p} \sim F_{\rm Lorentz}$ (when $|\Delta p|/p \sim \beta^{-1}$) by generating micro-instabilities (firehose, mirror)
- These help regulate the growth of $|\Delta p|$

KINETIC MICRO-INSTABILITIES

- The plasma responds at $F_{\Delta p} \sim F_{\rm Lorentz}$ (when $|\Delta p|/p \sim \beta^{-1}$) by generating micro-instabilities (firehose, mirror)
- These help regulate the growth of $|\Delta p|$

KINETIC MICRO-INSTABILITIES

- The plasma responds at $F_{\Delta p} \sim F_{\rm Lorentz}$ (when $|\Delta p|/p \sim \beta^{-1}$) by generating micro-instabilities (firehose, mirror)
- These help regulate the growth of $|\Delta p|$

OUTLINE - MAGNETO-IMMUTABLILITY

Focus on fluid-scale effects, not the kinetic micro-physics

- The dynamical effect of pressure anisotropy
 - Generation of pressure anisotropy
 - A simple prediction shear-Alfvén wave interruption
 - How the plasma avoids this magneto-immutability
- Simulations (Braginskii MHD)
 - Driven Alfvénic turbulence
 - The MRI

Schekochihin et al. 2009

Because of shear-Alfvén waves

TURBULENCE IS LIKE MHD, EVEN FOR $l \ll \lambda_{\mathrm{mfp}}$

ALFVÉN-WAVE INTERRUPTION

In a linearly polarized wave

$$\frac{dB}{dt} < 0$$

ALFVÉN-WAVE INTERRUPTION

In a linearly polarized wave

$$\frac{dB}{dt} < 0 \qquad \Delta p < 0$$

ALFVÉN-WAVE INTERRUPTION

In a linearly polarized wave

$$\frac{dB}{dt} < 0 \qquad \Delta p < 0$$

$$\begin{array}{c} \text{IF } \Delta p = -B^2 \\ \text{Firehose limit} \end{array}$$

In a linearly polarized wave

$$\frac{dB}{dt} < 0 \qquad \Delta p < 0$$

IF
$$\Delta p = -B^2$$
 $\nabla \cdot [\hat{b}\hat{b}(B^2 + \Delta p)] = 0$

Firehose limit

In a linearly polarized wave

Firehose limit

$$\frac{dB}{dt} < 0 \qquad \Delta p < 0$$

$$\mathbf{IF} \ \Delta p = -B^2 \qquad \nabla \cdot [\hat{b}\hat{b}(B^2 + \Delta p)] = 0$$

THE WAVE HAS REMOVED ITS OWN RESTORING FORCE

In a linearly polarized wave

Firehose limit

$$\frac{dB}{dt} < 0$$
 $\Delta p < 0$

IF
$$\Delta p = -B^2$$

$$\nabla \cdot [\hat{b}\hat{b}(B^2 + \Delta p)] = 0$$

THE WAVE HAS REMOVED ITS OWN RESTORING FORCE

This occurs if
$$\frac{\delta B_{\perp}}{B_0} \gtrsim \sqrt{\frac{\omega_A}{\nu_c}} \beta^{-1/2}$$
 or $\frac{\delta B_{\perp}}{B} \gtrsim \beta^{-1/2}$

Details depend on regime

In Braginskii MHD,

$$\Delta p \approx \frac{p_0}{\nu_c} \hat{b} \hat{b} : \nabla \boldsymbol{u}$$

wave decays over timescale

$$t_{\rm decay} > \tau_A$$

Details depend on regime

In Braginskii MHD,

$$\Delta p \approx \frac{p_0}{\nu_c} \hat{b} \hat{b} : \nabla \boldsymbol{u}$$

wave decays over timescale

$$t_{\rm decay} > \tau_A$$

Is turbulence damped in a weakly collisional plasma with

$$\frac{\delta B_{\perp}}{B_0} \gtrsim \sqrt{\frac{\omega_A}{\nu_c}} \beta^{-1/2} ?$$

MAGNETO-IMMUTABILITY

Due to $F_{\Delta p}$, plasma organizes itself to avoid motions that generate large $\hat{\pmb{b}}\hat{\pmb{b}}$: $\nabla \pmb{u}$ and Δp

$$\Delta p \approx \frac{p_0}{\nu_c} \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u} \approx \frac{p_0}{\nu_c} \frac{1}{B} \frac{dB}{dt} \quad \text{(from } \frac{1}{B} \frac{DB}{Dt} \approx \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u})$$

so these motions also minimize changes to B = |B|

MAGNETO-IMMUTABILITY

Due to $F_{\Delta p}$, plasma organizes itself to avoid motions that generate large $\hat{\pmb{b}}\hat{\pmb{b}}$: $\nabla \pmb{u}$ and Δp

$$\Delta p \approx \frac{p_0}{\nu_c} \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u} \approx \frac{p_0}{\nu_c} \frac{1}{B} \frac{dB}{dt} \quad \text{(from } \frac{1}{B} \frac{DB}{Dt} \approx \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u})$$

so these motions also minimize changes to B = |B|

We call this effect "Magneto-immutability"

AND

MAGNETO-IMMUTABILITY

AND

MAGNETO-IMMUTABILITY

$$D_t \mathbf{u} = -\nabla p + \dots$$
 drives flows away from large p

AND

MAGNETO-IMMUTABILITY

$$D_t \mathbf{u} = -\nabla p + \dots$$

drives flows away from large p

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{u}$$

p increases when $\nabla \cdot \boldsymbol{u} < 0$

AND

MAGNETO-IMMUTABILITY

$$D_t \boldsymbol{u} = -\nabla p + \dots$$

drives flows away from large p

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{u}$$

p increases when $\nabla \cdot \boldsymbol{u} < 0$

Flow does not support motions with $\nabla \cdot \boldsymbol{u} \neq 0$

Very effective when *p* is large

AND

MAGNETO-IMMUTABILITY

$$D_t \mathbf{u} = -\nabla p + \dots$$

drives flows away from large p

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{u}$$

p increases when $\nabla \cdot \boldsymbol{u} < 0$

Flow does not support motions with $\nabla \cdot \boldsymbol{u} \neq 0$

Very effective when *p* is large

Incompressible

AND

MAGNETO-IMMUTABILITY

$$D_t \mathbf{u} = -\nabla p + \dots$$

drives flows away from large p

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{u}$$

p increases when $\nabla \cdot \boldsymbol{u} < 0$

Flow does not support motions with $\nabla \cdot \boldsymbol{u} \neq 0$

Very effective when *p* is large

Incompressible

$$D_t \mathbf{u} = \nabla \cdot (\hat{\mathbf{b}}\hat{\mathbf{b}}\Delta p) + \dots$$
 drives anisotropic flows towards large positive Δp

AND

 $D_t \boldsymbol{u} = -\nabla p + \dots$

drives flows away from large p

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{u}$$

p increases when $\nabla \cdot \boldsymbol{u} < 0$

Flow does not support motions with $\nabla \cdot \boldsymbol{u} \neq 0$

Very effective when *p* is large

Incompressible

MAGNETO-IMMUTABILITY

 $D_t \mathbf{u} = \nabla \cdot (\hat{\mathbf{b}}\hat{\mathbf{b}}\Delta p) + \dots$ drives anisotropic flows towards large positive Δp

$$D_t \Delta p = 3p_0 \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u} + \dots$$

 Δp increases when $\hat{b}\hat{b}: \nabla u > 0$

AND

MAGNETO-IMMUTABILITY

$$D_t \boldsymbol{u} = -\nabla p + \dots$$

drives flows away from large p

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{u}$$

p increases when $\nabla \cdot \boldsymbol{u} < 0$

Flow does not support motions with $\nabla \cdot \boldsymbol{u} \neq 0$

Very effective when *p* is large

Incompressible

 $D_t \mathbf{u} = \nabla \cdot (\hat{\mathbf{b}}\hat{\mathbf{b}}\Delta p) + \dots$ drives anisotropic flows towards large positive Δp

$$D_t \Delta p = 3p_0 \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u} + \dots$$

 Δp increases when $\hat{b}\hat{b}: \nabla u > 0$

Flow does not support motions with $\hat{b}\hat{b}: \nabla u \neq 0$

 $D_{t}u = -\nabla p + \dots$

drives flows away from large p

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{u}$$

p increases when $\nabla \cdot \boldsymbol{u} < 0$

Flow does not support motions with $\nabla \cdot \boldsymbol{u} \neq 0$

Very effective when p is large

Incompressible

AND

MAGNETO-IMMUTABIL

 $D_t \boldsymbol{u} = \nabla \cdot (\hat{\boldsymbol{b}} \hat{\boldsymbol{b}} \Delta p) + \dots$ drives anisotropic flows towards large positive Δp

$$D_t \Delta p = 3p_0 \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u} + \dots$$

 Δp increases when $\hat{b}\hat{b}: \nabla u > 0$

Flow does not support motions with $\hat{\boldsymbol{b}}\hat{\boldsymbol{b}}: \nabla \boldsymbol{u} \neq 0$

$$\frac{1}{B} \frac{DB}{Dt} = \hat{b}\hat{b} : \nabla \hat{u} - \nabla \cdot u$$
so changes to *B* minimized

 $D_t \mathbf{u} = -\nabla p + \dots$

drives flows away from large p

$$D_t \rho = -\rho \nabla \cdot \boldsymbol{u}$$

p increases when $\nabla \cdot \boldsymbol{u} < 0$

Flow does not support motions with $\nabla \cdot \boldsymbol{u} \neq 0$

Very effective when *p* is large

Incompressible

AND

MAGNETO-IMMUTABILITY

$$D_t \boldsymbol{u} = \nabla \cdot (\hat{\boldsymbol{b}}\hat{\boldsymbol{b}}\Delta p) + \dots$$

drives anisotropic flows towards large positive Δp

$$D_t \Delta p = 3p_0 \hat{\boldsymbol{b}} \hat{\boldsymbol{b}} : \nabla \boldsymbol{u} + \dots$$

 Δp increases when $\hat{b}\hat{b}: \nabla u > 0$

Flow does not support motions with $\hat{b}\hat{b}: \nabla u \neq 0$

$$\frac{1}{B} \frac{DB}{Dt} = \hat{b}\hat{b}: \nabla \hat{u} - \nabla \cdot u$$
so changes to *B* minimized

"Magneto-immutable"

OUTLINE - MAGNETO-IMMUTABLILITY

Focus on fluid-scale effects, not the kinetic micro-physics

- The dynamical effect of pressure anisotropy
 - Generation of pressure anisotropy
 - A simple prediction shear-Alfvén wave interruption
 - ▶ How the plasma avoids this magneto-immutability
- Simulations (Braginskii MHD)
 - Driven Alfvénic turbulence
 - The MRI

SIMULATIONS — ALFVENIC TURBULENCE

- Standard, driven, critically balanced MHD turbulence with $\frac{\delta B_{\perp}}{B_0} \gtrsim \sqrt{\frac{\omega_A}{\nu_c}} \beta^{-1/2}$ (large Braginskii viscosity, It_{Brag} $\lesssim 1$).
- Incompressible turbulence works fine, does magneto-immutable turbulence?

SIMULATIONS — ALFVENIC TURBULENCE

> Standard, driven, critically balanced MHD turbulence with

$$\frac{\delta B_{\perp}}{B_0} \gtrsim \sqrt{\frac{\omega_A}{\nu_c}} \beta^{-1/2}$$
 (large Braginskii viscosity, It_{Brag} $\lesssim 1$).

Incompressible turbulence works fine, does magneto-immutable

turbulence?

But the fluid motions themselves are quite different

Nonlinear analogue to circularly polarized wave

Magneto-immutable

Fully turbulent

$$t = 4\tau_A$$

- Low-mach-number flows minimize $\nabla \cdot \boldsymbol{u}$
- lacksquare Similarly, magneto-immutable flows minimize $\hat{m{b}}\hat{m{b}}$: $abla m{u}$

- Low-mach-number flows minimize $\nabla \cdot \boldsymbol{u}$
- Similarly, magneto-immutable flows minimize $\hat{m{b}}\hat{m{b}}:
 abla m{u}$

- Low-mach-number flows minimize $\nabla \cdot \boldsymbol{u}$
- Similarly, magneto-immutable flows minimize $\hat{m{b}}\hat{m{b}}:
 abla m{u}$

MRI

In MRI turbulence, background shear drives mean $\Delta p_0 \propto \hat{\pmb{b}}\hat{\pmb{b}}$: $\nabla \pmb{U}_0$

MRI

- In MRI turbulence, background shear drives mean $\Delta p_0 \propto \hat{\pmb{b}}\hat{\pmb{b}}$: $\nabla \pmb{U}_0$
- The turbulence minimizes the $total\ \Delta p$ by cancelling $\hat{\pmb{b}}\hat{\pmb{b}}: \nabla \pmb{U}_0$ with $\hat{\pmb{b}}\hat{\pmb{b}}: \nabla \pmb{u}$

Relation to kinetics (Kunz+ 2016, Hoshino 2015) remains unclear

Turbulence becomes *more similar* to MHD as isotropic Re increases

Relation to kinetics (Kunz+ 2016, Hoshino 2015) remains unclear

Turbulence becomes *more similar* to MHD as isotropic Re increases

Relation to kinetics (Kunz+ 2016, Hoshino 2015) remains unclear

CONCLUSIONS

- The dynamical feedback of Δp on flow occurs around the same point that mirror/firehose are excited
- This feedback tends to reduce Δp , and consequently, variations in $| {\it \textbf{B}} |$

we call this magneto-immutability

- Braginskii MHD simulations show that "magneto-immutable" turbulence is very similar to MHD, despite minimizing $\hat{b}\hat{b}$: ∇u
- More work needed to understand collisionless regime

