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Motivation

» Reconnection energizes
electrons

» Solar flares
» Magnetospheres
» Pulsar flares, ...

» What processes drive
electron energization?

» How efficient are these
processes?
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When is reconnection an efficient accelerator?

» Peak (non-relativistic) electron acceleration requires
Fermi acceleration & strong 3D transport (bg ~ 1)

» Guide field (bg) controls the acceleration mechanism

» Use 2D PIC simulations to isolate mechanism efficiency
» Strong guide field, by 2 1, throttles Fermi acceleration

» by controls 3D transport
» Compare 2D & 3D simulations to isolate role of 3D

transport
» Stochastic 3D field enhance electron acceleration
» Strong 3D transport requires a guide field by > 0



Energization Mechanisms |: Fermi Acceleration
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F1G. 1. Type B reflection of a cosmic-ray particle.

» Moving field lines slingshot
charged particles

» Particle with initial parallel
velocity v reflecting from field
line moving at v gains
energy: v — V| +2va
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Energization Mechanisms IlI: E; and Betatron

Magnetic
field
Electron /
/
> B
» Changes v
» Difficult to sustain on large scales; electrons quickly move
to cancel

» Betatron (conservation of u o« v2 /B)
» Changing B induces an emfthat changes v, .
» In reconnection, the magnetic field decreases and the emf
opposes gyration (i.e., reduces v, ).



How Particles Gain Energy

Bulk expression, guiding-center limit

de/dt = ymvi(u, - k) Fermi Reflection
+ qEv Parallel Electric Fields
2
mvs (0B ,
5B <8t +u, - VB) Betatron Acceleration

» Particle energy: ¢
Magnetic field curvature: k =b -V b
Perpendicular plasma flow: u, = ¢ (E x B)/B?

» Fermiand E; affect v|.
Betatron affects v, is usually unimportant.



Does this work?
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» Guiding-center limit matches electron energization in the
simulation.

» Fermi reflection and E; are both important.
» Betatron acceleration is small.



2D Simulations: Isolate Mechanisms
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» Parallel electric fields
» Reflection from accelerator’ at X-line
reconnection outflows: localized to diffusion region
volume-filling acceleration (> 50% of E| energy
» Strong energy scaling: conversion).
de/dt o € » Weak energy scaling:
de/dt  €'/?




Efficient energization requires Fermi acceleration
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» E; scales weakly with energy compared to Fermi.
» Primarily drives bulk heating (not energetic electrons)
» Efficient energization occurs in the Fermi-dominated
regime



The guide field determines the dominant mechanism

» A strong guide field throttles
Fermi acceleration

> by ~ 0: head-on reflection
(strong kick)
> by > 1: glancing reflection
(weak kick)
» E;: Guide field directs particles
along reconnection E; (only in
diffusion region).




The guide field controls the dominant mechanism
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» by < 1: Fermi reflection dominates energy conversion
» by > 1: E dominated energy conversion



EH IS an inefficient electron accelerator
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» bg > 1: E dominates but energizes few electrons



Energization is enhanced in 3D systems
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» Comparable magnetic energy release in 2D, 3D

» Factor of ~ 10 increase in high-energy electrons in 3D.

» Why does a larger energy fraction go into energetic
electrons in 3D?



Energetic Electrons (> 0.5 mec?)
Energy Density, 3D
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3D transport (chaotic field lines) is key

2D

» Particles follow field lines

» 2D: Single acceleration
period then ejection into
closed island. Limited
energy gain.

» 3D: Stochastic fields allows
particles to escape islands
and continuously
accelerate.




The guide field controls 3D transport

3D, by = 0

» 3D enhancement
increases with guide
field

» bg ~ 0: quasi-2D field
(island trapping)

» by 2 1: stochastic field
(strong transport)
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Putting it all together

» Efficient Fermi acceleration requires by < 1
» 3D transport requires by > 0
» Simulations: peak electron energization for by ~ 1
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Power Laws?
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» Many groups get power laws in relativistic reconnection.
Much harder in the non-relativistic case.

» See posters by Xiaocan Li, Fan Guo, Patrick Kilian,
Yingcaho Lu + talk by Dmitri after lunch



The Payoff: A New Computational Model

See Jim Drake’s poster

If £, is unimportant for particle energization, we can ignore
the physics behind it

» Eliminate kinetic scales
» Do not control production of most energetic particles
» Particle production controlled by the dynamics of
macro-islands

A self-consistent MHD/guiding-center kinetic model
» An MHD backbone with macro-particles evolved with the
guiding-center equations
» Energetic component evolved in the MHD fields
» Energetic particle feedback on the MHD fluid through the

pressure-driven currents
» Total energy of system (MHD plus energetic component) is

conserved



Basic equations

» MHD momentum equation with MHD pressure and
energetic particle current (Jp).

av 1 1
pop = EJ xB—-VP— EJehTJ_ x B + eniEb.
» With
cP.h1 b
o7 = %bx (Pen .V IN(B) + Ten) — (V % eBhi > ’
1

RHS: gradient B drift, curvature drift, magnetization current
» Ohm’s Law is unchanged
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E = —(NecVect+NenV B=—JxB-—-vxB ~ ——vxB,
I‘IC( ecVectNen eh)>< nec X p X p X

» Particles are given by guiding-center equations

d He
&pe” = Pe|VE - Kk — %b -VB - eE”



Electron Anisotropy

pi (2D)
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» Fermi Reflection and E Jj increase p;.



Code Validation (for more see poster by J. Drake)
» Alfvén wave with P # P,
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Conclusions

» Peak electron acceleration requires Fermi acceleration
& strong 3D transport (by ~ 1)
» by controls the mechanism
» 2D simulations isolate mechanism efficiency
» Strong guide field by > 1 throttles Fermi acceleration
» by controls 3D transport

» Compare 2D & 3D simulations to isolate role of 3D
transport

» Stochastic 3D field enhance electron acceleration

» Strong 3D transport requires a guide field by > 0

New computational model based on this work
self-consistently describes particle acceleration in
macro-scale systems



Extra Slides



Code Validation Il: Linear Growth of Firehose
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Initial Conditions

! (Q.t=0) | (Qt=12)

» Periodic Boundary » Reconnection develops
Conditions from particle noise

> Guide field by = 1



Filamentary Current Structure
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