Electron Energization in Non-Relativistic Magnetic Reconnection

M. Swisdak, J. T. Dahlin, J. F. Drake, H. Arnold

Connecting Micro and Macro Scales: Acceleration, Reconnection and Dissipation in Astrophysical Plasmas 10 September 2019

Motivation

- Reconnection energizes electrons
 - Solar flares
 - Magnetospheres
 - Pulsar flares, . . .
- What processes drive electron energization?
- How efficient are these processes?

When is reconnection an efficient accelerator?

- Peak (non-relativistic) electron acceleration requires Fermi acceleration & strong 3D transport ($b_g \sim$ 1)
- ▶ Guide field (b_q) controls the acceleration mechanism
 - ▶ Use 2D PIC simulations to isolate mechanism efficiency
 - ▶ Strong guide field, $b_g \gtrsim 1$, throttles Fermi acceleration
- ▶ b_a controls 3D transport
 - Compare 2D & 3D simulations to isolate role of 3D transport
 - Stochastic 3D field enhance electron acceleration
 - ▶ Strong 3D transport requires a guide field $b_q > 0$

Energization Mechanisms I: Fermi Acceleration

Fig. 1. Type B reflection of a cosmic-ray particle.

- Moving field lines slingshot charged particles
- Particle with initial parallel velocity $v_{||}$ reflecting from field line moving at v_A gains energy: $v_{||} \rightarrow v_{||} + 2v_A$

Energization Mechanisms II: E_{\parallel} and Betatron

- **▶** *E*_{||}:
 - ▶ Changes v_{||}
 - Difficult to sustain on large scales; electrons quickly move to cancel
- ▶ Betatron (conservation of $\mu \propto v_{\perp}^2/B$)
 - ▶ Changing **B** induces an *emf* that changes v_{\perp} .
 - ▶ In reconnection, the magnetic field decreases and the *emf* opposes gyration (i.e., reduces v_{\perp}).

How Particles Gain Energy

Bulk expression, guiding-center limit

$$\begin{array}{ll} \textit{d} \epsilon / \textit{d} t = & \gamma \textit{m} \textit{v}_{\parallel}^2 (\textbf{u}_{\scriptscriptstyle E} \cdot \boldsymbol{\kappa}) & \text{Fermi Reflection} \\ & + & \textit{q} \textit{E}_{\parallel} \textit{v}_{\parallel} & \text{Parallel Electric Fields} \\ & + & \frac{\textit{m} \textit{v}_{\perp}^2}{2\textit{B}} \left(\frac{\partial \textit{B}}{\partial \textit{t}} + \textbf{u}_{\scriptscriptstyle E} \cdot \nabla \textit{B} \right) & \text{Betatron Acceleration} \end{array}$$

- Particle energy: ε
 Magnetic field curvature: κ = b · ∇ b
 Perpendicular plasma flow: u_ε = c (E × B)/B²
- Fermi and E_{\parallel} affect v_{\parallel} . Betatron affects v_{\perp} , is usually unimportant.

Does this work?

- Guiding-center limit matches electron energization in the simulation.
- ► Fermi reflection and E_{||} are both important.
- Betatron acceleration is small.

2D Simulations: Isolate Mechanisms

- Fermi acceleration
- Reflection from reconnection outflows: volume-filling acceleration
- Strong energy scaling: $d\epsilon/dt \propto \epsilon$

Parallel electric fields

- ▶ Primarily 'linear accelerator' at X-line localized to diffusion region (> 50% of E_{||} energy conversion).
- Weak energy scaling: $d\epsilon/dt \propto \epsilon^{1/2}$

Efficient energization requires Fermi acceleration

- ► E_{||} scales weakly with energy compared to Fermi.
 - Primarily drives bulk heating (not energetic electrons)
- Efficient energization occurs in the Fermi-dominated regime

The guide field determines the dominant mechanism

- A strong guide field throttles
 Fermi acceleration
 - b_g ~ 0: head-on reflection (strong kick)
 - b_g ≫ 1: glancing reflection (weak kick)
- ► E_{||}: Guide field directs particles along reconnection E_z (only in diffusion region).

The guide field controls the dominant mechanism

- ▶ b_q ≪ 1: Fermi reflection dominates energy conversion
- ▶ $b_g \gg$ 1: E_{\parallel} dominated energy conversion

E_{\parallel} is an inefficient electron accelerator

▶ $b_q \gg 1$: E_{\parallel} dominates but energizes few electrons

Energization is enhanced in 3D systems

- Comparable magnetic energy release in 2D, 3D
- ▶ Factor of \approx 10 increase in high-energy electrons in 3D.
- Why does a larger energy fraction go into energetic electrons in 3D?

Energetic Electrons (> 0.5 $m_e c^2$)

3D transport (chaotic field lines) is key

- Particles follow field lines
- 2D: Single acceleration period then ejection into closed island. Limited energy gain.
- 3D: Stochastic fields allows particles to escape islands and continuously accelerate.

The guide field controls 3D transport

- 3D enhancement increases with guide field
- $b_g \sim$ 0: quasi-2D field (island trapping)
- $b_g \gtrsim$ 1: stochastic field (strong transport)

Putting it all together

- ▶ Efficient Fermi acceleration requires $b_g \lesssim 1$
- ▶ 3D transport requires $b_q > 0$
- ▶ Simulations: **peak electron energization for** $b_q \sim 1$

Power Laws?

- Many groups get power laws in relativistic reconnection. Much harder in the non-relativistic case.
- See posters by Xiaocan Li, Fan Guo, Patrick Kilian,
 Yingcaho Lu + talk by Dmitri after lunch

The Payoff: A New Computational Model

See Jim Drake's poster

If $\textbf{\textit{E}}_{\parallel}$ is unimportant for particle energization, we can ignore the physics behind it

- Eliminate kinetic scales
 - Do not control production of most energetic particles
 - Particle production controlled by the dynamics of macro-islands

A self-consistent MHD/guiding-center kinetic model

- An MHD backbone with macro-particles evolved with the guiding-center equations
 - Energetic component evolved in the MHD fields
 - Energetic particle feedback on the MHD fluid through the pressure-driven currents
 - Total energy of system (MHD plus energetic component) is conserved

Basic equations

► MHD momentum equation with MHD pressure and energetic particle current (J_h).

$$\rho \frac{d\mathbf{v}}{dt} = \frac{1}{c} \mathbf{J} \times \mathbf{B} - \nabla P - \frac{1}{c} \mathbf{J}_{ehT\perp} \times \mathbf{B} + en_i E_{\parallel} \mathbf{b}.$$

With

$$\mathbf{J}_{ehT\perp} = rac{c}{B}\mathbf{b} imes \left(P_{eh\perp} \mathbf{\nabla} \ln(B) + T_{eh\parallel} \kappa
ight) - \left(\mathbf{\nabla} imes rac{cP_{eh\perp} \mathbf{b}}{B}
ight)_{\perp},$$

RHS: gradient B drift, curvature drift, magnetization current

► Ohm's Law is unchanged

$$\mathbf{E} = \frac{1}{nc}(n_{ec}\mathbf{v}_{ec} + n_{eh}\mathbf{v}_{eh}) \times \mathbf{B} = \frac{1}{nec}\mathbf{J} \times \mathbf{B} - \frac{1}{c}\mathbf{v} \times \mathbf{B} \simeq -\frac{1}{c}\mathbf{v} \times \mathbf{B},$$

▶ Particles are given by guiding-center equations

$$rac{d}{dt}
ho_{e\parallel}=
ho_{e\parallel}\mathbf{v}_{E}\cdot\mathbf{\kappa}-rac{\mu_{e}}{\gamma_{e}}\mathbf{b}\cdot\mathbf{
abla}B-eE_{\parallel}$$

Electron Anisotropy

▶ Fermi Reflection and $E_{\parallel}J_{\parallel}$ increase p_{\parallel} .

Code Validation (for more see poster by J. Drake)

▶ Alfvén wave with $P_{\parallel} \neq P_{\perp}$

$$V_{p} = V_{A} \sqrt{1 - 4\pi \frac{P_{\parallel} - P_{\perp}}{B^{2}}} \equiv \alpha V_{A}$$

$$\begin{array}{c} 1.2 \\ 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.12 \\ 0.0 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.13$$

Conclusions

- Peak electron acceleration requires Fermi acceleration
 & strong 3D transport ($b_g \sim 1$)
- b_g controls the mechanism
 - 2D simulations isolate mechanism efficiency
 - Strong guide field $b_g \gtrsim 1$ throttles Fermi acceleration
- ▶ b_g controls 3D transport
 - Compare 2D & 3D simulations to isolate role of 3D transport
 - Stochastic 3D field enhance electron acceleration
 - Strong 3D transport requires a guide field $b_g > 0$

New computational model based on this work self-consistently describes particle acceleration in macro-scale systems

Extra Slides

Code Validation II: Linear Growth of Firehose

$$\gamma = kV_{A}|\alpha| - \nu k^{4}$$

Initial Conditions

- Periodic Boundary Conditions
- Guide field $b_g = 1$

Reconnection develops from particle noise

Filamentary Current Structure

