Inverse energy transfer via

magnetic reconnection

Muni Zhou', Nuno F Loureiro', Dmitri A Uzdensky?
Pallavi Bhat'3, Greg R Werner?

'MIT, 2University of Colorado — Boulder,

3University of Leeds

Ps FC @]’ University of Colorado Boulder



Cosmic magnetic fields

Large coherent structure and strong fields are observed
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Magnetic fields of galaxy M51. [Fletcher et al. 201 1]

Left: Total magnetic field strength, (color scale in pG).

Right: the B-vectors imposed on optical image.



One possible route

Coalescence instability [Finn & Kaw 1977]
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One possible route

4 N

* Propose a dynamical model based
on magnetic reconnection

e Test the model in the MHD
regime

* Use artificial setup of magnetic
seed field

Coalescence instability [Finn & Kaw 1977]
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Hierarchical merger model

Minimal model for successive magnetic structures mergers

l Assumptions

* Consider an ensemble of identical magnetic structures

. Hierarchical fashion

Generations

: =0 —n=1 — N=2 — axans -
—> structures merge successively n=0 " " n=ny
To 11 12
* Merge in discrete steps ® — .
—> generation of structures denoted by n o I
*  Merge in pairs — .
o :
N | [N/2]: N/4]
®

o



2D: Merger conserves area and flux

Transition from one generation to the next

As islands merge, physical quantities evolve with n

Characterize the nth-generation islands: Conservation laws of merger

*  Flux enclosed in an island Y, | Mass conserved, assume

- Typical magnetic field in an island incompressibility, area conserved
R = V2R
Bn _ wn/Rn n+1 \/7 n
e  Magnetic energy density 2. Flux conserved: ¢n+1 — lbn
And h :
£ — Bi/Sﬂ' nd hence

Bn—l—l — Bn/\/§ gn—l—l — gn/2

[Fermo et al, 2010; Zrake et al, 2017; Lyutikov et al, 2017]



Magnetic reconnection during mergers

Lundquist humber and reconnection rate are conserved

In MHD regime: .5, = anA,n/n x R, B, <1, is preserved, B, is preserved
In collisionless regime: [Brec =~ 0.1  is preserved

Merging process remains in the same reconnection regime in which it starts
initially

Merger time for n-th generation islands:

Tn ~ Rn/vrec,n

Reconnection velocity V.., and v, ,, are related by dimensionless reconnection rate:

/Brec,n = vrec,n/vA,'n-
Merger time evolves as 7,,,1 = 27,

Scaling laws from the hierarchical model:

k=Fkot /2, B =By Y2 t =1t/

Is the reconnection

E = 805_17 N = NOg_la @D — % times scale
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Done with pseudo-spectral code Viriato [Loureiro et al, 2016]
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2D MHD simulation

Magnetic energy decay at reconnection time scale

Rescaled (to 7) energy decay curves overlap
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2D MHD simulation

Self-similar evolution of the system

self-similar time evolution B(k/l7 l2£) = l_lB(k, f)
Uk, t) otk 20 =~+1

Y = 2 due to the sharp magnetic
reversal at current sheets
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3D Analytical model

Characterization of a flux tube

consider system with:
* constant strong guide field

(for simplicity)

* Volume-filling flux tubes aligned

with the guide field, with
alternating polarities
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3D Analytical model

Discrete generation description

* Conservation of axial flux: \Ifa,n_|_1 — Q\Ija,,n

2 L 2
— conservation of cross-section area: Rn+17T — 2Rn77

* Conservation of magnetic potential wn—l—l — ?pn (Qﬂ — BR)

— conservation of Lundquist number. S5, 1 = 5, (S X RBJ_/U X %D/U)

> Bia41=DB1,/V2

Time scales: T R/BJ_ 7'|| ~ Z/Bg

Critical Balance: 7] ~ 7|, R/BJ_ ~ Z/Bg
[Goldreich & Sridhar 1995]

ln+1 — 2ln

(No kink instability expected for tubes in RMHD)



3D Analytical model

Continuous time description

* Perpendicular dynamics: Quasi-2D merger
ki = /ﬂ,of_l/Z, B, = BL,of_l/Q, By = Eprot !
Na;y — azy,O{_l

* Parallel dynamics: Alfven wave propagation

| = ot
* Related through critical balance

R
B, B.



3D Reduced-MHD simulation
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3D Reduced-MHD simulation

Current density at various times

JZ

39.4

S, = 1250,

L,[Ly]=2Lx|L,]

19.7

Current sheets
| J 1> 3 Jims
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3D Reduced-MHD simulation

visuals

So = 1250, L, [Ly] = 4Ly[L,]
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3D Reduced-MHD simulation

Two-stages evolution
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First stage: developing turbulence

tubes break in parallel direction
Increasing complexity of the system

robust dissipation of magnetic energy
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Second stage: decaying turbulence
merging of flux tubes

self-similar evolution

energy inverse transferred to larger scales

So = 1250, L,[Ly]| =4Ly[L,]
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3D Reduced-MHD simulation

Number of structures

|dentify the critical points of magnetic potential on x-y planes
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3D Reduced-MHD simulation

Magnetic power spectra

Hyper-resistivity, L,[Ly] = 4Ly|L,] [ dkEM (ZT”)
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3D Reduced-MHD simulation

Magnetic structure function

Sp(0x,t) = (IB(x2,t) — B(x1,1)[*),,

t=20.7 TA t=40.7 T
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Critical balance

time evolution of statistical flux tubes
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Summary

Magnetic energy can be transferred to larger scales through magnetic reconnection

l Dynamics reconnection-based model
* Hierarchical merger of magnetic structures

* Energy decay as t ! and scale of magnetic field grows as t1/?
* Reconnection regime remains the same

= Numerical study
* 2D MHD---self-similar magnetically-dominated evolution
* 3D RMHD-—additional parallel dynamics determined by critical balance
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