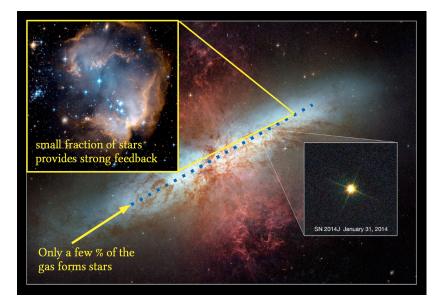
Cosmic rays in the interstellar medium and their dynamical impact

Philipp Girichidis

Christoph Pfrommer, Thorsten Naab, Michał Hanasz, Stefanie Walch, Daniel Seifried, Georg Winner, Maria Werhahn

AIP Potsdam


October 15, 2019

Starburst galaxy M82 (Hubble)

Starburst galaxy M82 (Hubble)

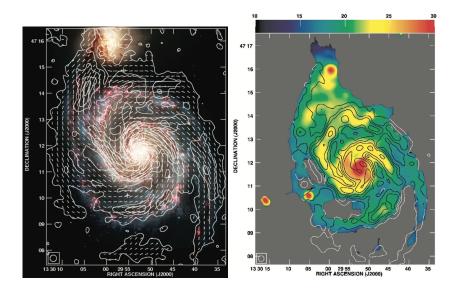
- strong outflows with $\eta = \dot{M}_{\rm outflow} / \dot{M}_*$ of a few
- outflows in all chemical phases (ionized molecular)

3/28

Global ISM properties

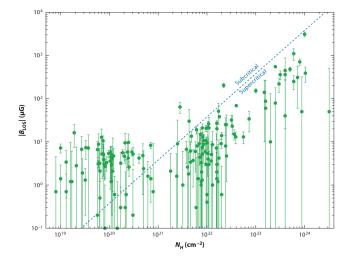
density	$1{\rm cm}^{-3}$
temperature	$10^4{ m K}$
magnetic fields	$5\mu{ m G}$
turbulence	$10\mathrm{kms^{-1}}$
cosmic rays	$1{\rm eVcm^{-3}}$

Global ISM properties

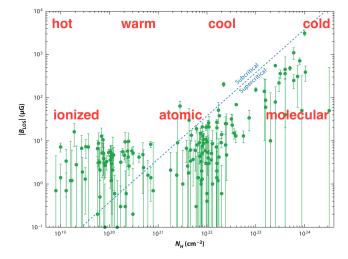

density	$1\mathrm{cm}^{-3}$	$1{\rm cm}^{-3}$
temperature	$10^4{ m K}$	$1{\rm eVcm^{-3}}$
magnetic fields	$5\mu{ m G}$	$1{\rm eVcm^{-3}}$
turbulence	$10\mathrm{kms^{-1}}$	$1{\rm eVcm^{-3}}$
cosmic rays	$1{\rm eVcm^{-3}}$	$1{\rm eVcm^{-3}}$

Global ISM properties

density	$1\mathrm{cm}^{-3}$	$1\mathrm{cm}^{-3}$	$10^{-4} - 10^6 \mathrm{cm}^{-3}$
temperature	$10^4{ m K}$	$1{\rm eVcm^{-3}}$	$10 - 10^8 \mathrm{K}$
magnetic fields	$5\mu{ m G}$	$1\mathrm{eV}\mathrm{cm}^{-3}$	$0.1 - 10^3 \mu { m G}$
turbulence	$10\mathrm{kms^{-1}}$	$1\mathrm{eV}\mathrm{cm}^{-3}$	$0.1 - 10^3 \mathrm{km s^{-1}}$
cosmic rays	$1\mathrm{eV}\mathrm{cm}^{-3}$	$1{\rm eVcm^{-3}}$	$1{\rm eV}{\rm cm}^{-3}$


Magnetic fields in galaxies (M51)

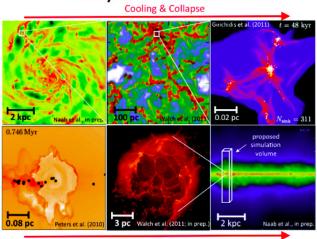
Fletcher + (2011)


Philipp Girichidis (AIP Potsdam)

Magnetic fields in the interstellar medium

Crutcher (2012)

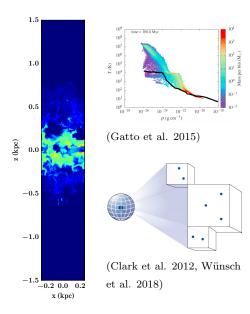
Magnetic fields in the interstellar medium


Crutcher (2012)

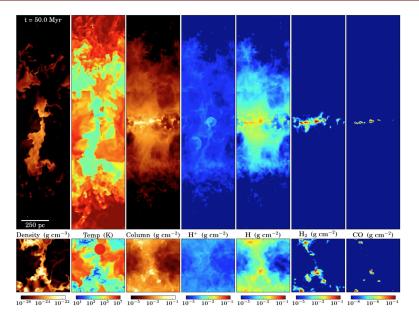
SILCC: ISM details on different scales

SILCC: SImulating the LifeCycle of molecular Clouds Walch+2015,

Girichidis+2016b

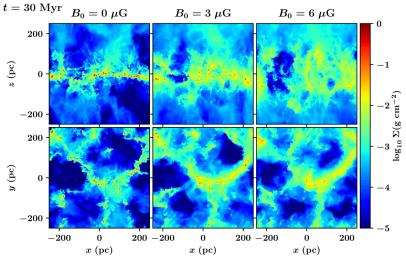


Lifecycle of molecular clouds


Stellar Feedback & Outflows

Setup for ISM simulations

- stratified box (deAvillez+2004, 2005, Kim & Ostriker+ 2013 - 2018, Hennebelle & Iffrig 2015)
- external potential (ρ_{*}, DM)
 MHD
- atomic, mol., metal cooling (follow H⁺, H, H₂, C⁺, CO) (Glover et al. 2012, Walch et al. 2015)
- shielding effects $(A_{\rm V} > 1)$
- stellar feedback (SNe, CRs)
- MW conditions: $10 \frac{M_{\odot}}{\text{pc}^2}, Z_{\odot}$


$SN-driven \ ISM \ (Walch+2015, Girichidis+2016a)$

Philipp Girichidis (AIP Potsdam)

CRs in the ISM

Dynamical impact of magnetic fields (Girichidis+ 2018b)

Girichidis et al. 2018, MNRAS, 480, 3511

magnetic fields result in more diffuse gas

Philipp Girichidis (AIP Potsdam)

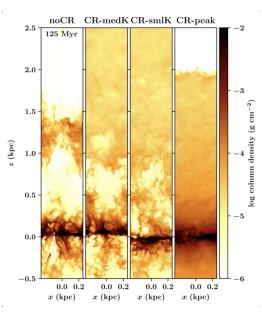
CRs in the ISM

- CRs: $E_{\rm CR} \sim E_{\rm mag} \sim E_{\rm th} \lesssim E_{\rm kin}$ (Ferriere 2001)
- primary source: shocks: DSA Axford+ 1977; Krymskii 1977; Bell 1978; Blandford & Ostriker1978; Malkov+ 2001, Caprioli & Spitkovsky 2014
- mainly SN remnants
- efficiency $10\% (10^{50} \,\mathrm{erg/SN})$
- stellar wind shocks

10⁴ 10³ 10² e7or e[±]} 10 E² dN/dE(GeV m⁻²s⁻¹sr⁻) 01 10 10 10 10 10 10 10 all-particle 10 10-10-4 10 10¹⁰ 10⁶ 10⁸ 10-4 104 10⁴ 10 E(GeV)

Combined MHD-CR equations (Girichidis+2016a, Girichidis+2018a)

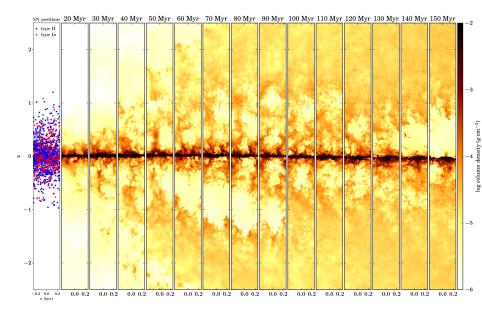
based on MHD-Solver HLLR3 (Bouchut+ 2007, 2010, Waagan+ 2009, 2011)

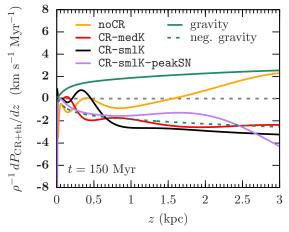

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0\\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} - \frac{\mathbf{B} \mathbf{B}}{4\pi} \right) + \nabla p_{\text{tot}} = \rho \mathbf{g}\\ \frac{\partial e_{\text{tot}}}{\partial t} + \nabla \cdot \left[\left(e_{\text{tot}} + p_{\text{tot}} \right) \mathbf{v} - \frac{\mathbf{B} (\mathbf{B} \cdot \mathbf{v})}{4\pi} \right] &= \rho \mathbf{v} \cdot \mathbf{g} + \nabla \cdot (\mathbf{K} \cdot \nabla e_{\text{cr}}) + Q_{\text{cr}}\\ \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) &= 0\\ \frac{\partial e_{\text{cr}}}{\partial t} + \nabla \cdot \left(e_{\text{cr}} \mathbf{v} \right) &= -p_{\text{cr}} \nabla \cdot \mathbf{v} + \nabla \cdot (\mathbf{K} \cdot \nabla e_{\text{cr}}) \\ + Q_{\text{cr}} \end{split}$$

similar to Hanasz & Lesch 2003, Pfrommer et al. 2017

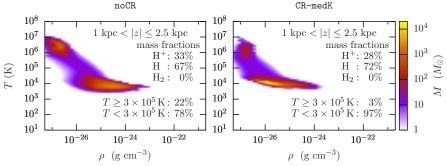
dynamical impact of CRs

- Galactic CRs: SNe (DSA, Axford et al. 1977; Krymskii 1977; Bell 1978)
- $\bullet~10\%$ of SN energy
- dynamical impact (Girichidis+ 2018a)
 - no CRs
 - $K_{\parallel} = 3 \times 10^{28} \, \frac{\text{cm}^2}{\text{s}}$
 - $K_{\parallel} = 1 \times 10^{28} \, \frac{\mathrm{cm}^2}{\mathrm{s}}$
 - SNe in peaks
- data publicly available: girichidis.com

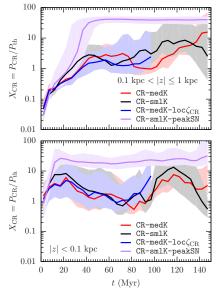

http://silcc.mpa-garching.mpg.de


time evolution without CRs

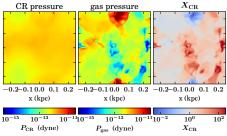
time evolution including CRs


Net force balance

- thermal SNe: locally strong accelerations, temporal fluctuations
- incl. CR: smoother forces, net outward pointing force
- for slow CR diffusion: net pressure gradient exceeds gravity

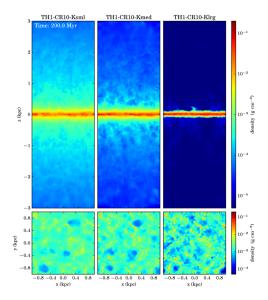

Outflow strength and composition

- CRs drive stronger outflows from the disk
- effective mass loading factors maesured at 2.5 kpc $\eta_{\rm therm} \approx 0.1$ (Kim+2018), $\eta_{\rm cr} \sim 0.7 1.4$ (Mao+2018)

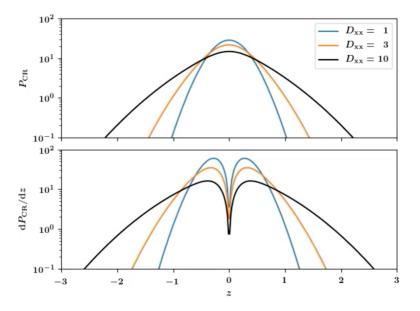


- Thermal run produces more hot gas.
- CR-driven outflows have same ionisation degree.

CR pressure and $X_{\rm CR}$

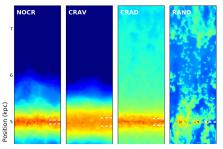


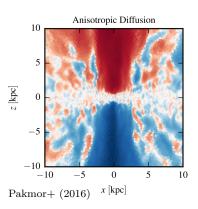
- smooth CR energy distribution
- CR pressure dominates in the disk
- region above the disk: equipartition

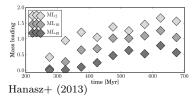


Dependence on the diffusion coefficient

- high diffusion speeds
- fast removal of CR energy
- shallow CR energy gradients
- less dense atmosphere
- slightly faster outflow (Dorfi & Breitschwerdt 2012)
- large differences between isotropic vs. anisotropic (Pakmor et al. 2016)

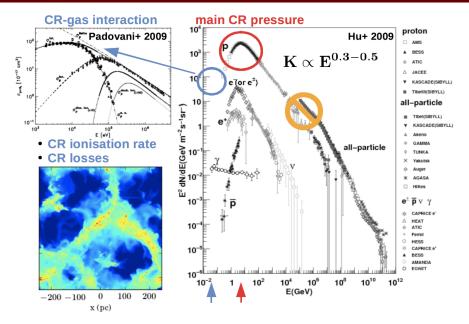


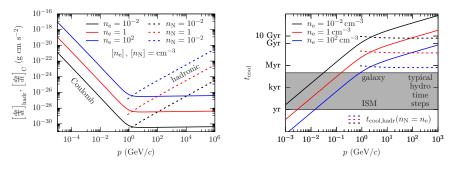

Dependence on the diffusion coefficient



Other studies

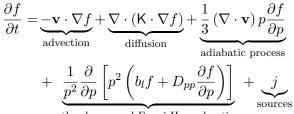
- ISM: Hanasz+ (2009), Simpson+ (2016), Farber+ (2018)
- Galaxy (isotropic diff.): Booth+ (2013), Salem+ (2014), Pakmor+ (2016), Jacob+ (2018)
- Galaxy (anisotropic diff.): Hanasz+ (2013), Pakmor+ (2016), Pfrommer+ (2017)
- Galaxy (streaming): Uhlig+ (2012), Ruszkowski+ (2017)




Philipp Girichidis (AIP Potsdam)

CRs in the ISM

CR spectrum


CR cooling

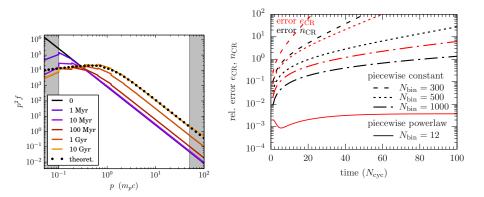
- Coulomb losses important for low-E CRs
- hadronic losses: $CR + p \rightarrow \pi^0 \rightarrow 2\gamma$
- spectra will not be steady state spectra

Fokker-Planck equations for CRs

• start with Fokker-Planck equation

other losses and Fermi II acceleration

• chose piecewise powerlaws for f

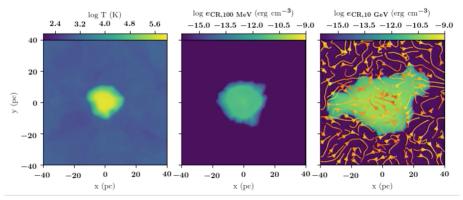

$$f(p) = f_{i-1/2} \left(\frac{p}{p_{i-1/2}}\right)^{q_i},$$

• derive number density and energy density

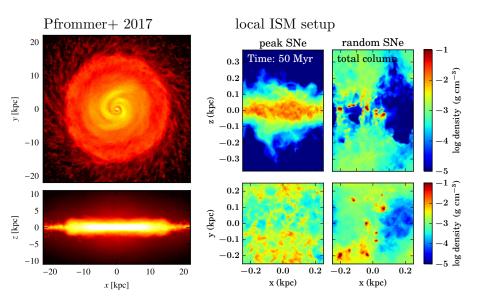
$$\mathbf{n_i} = \int_{p_{i-1/2}}^{p_{i+1/2}} 4\pi p^2 f(p) \, dp \qquad \mathbf{e_i} = \int_{p_{i-1/2}}^{p_{i+1/2}} 4\pi p^2 f(p) T(p) \, dp$$

• see also Miniati 2001, Yang+ 2017, Girichidis+2019

Spectral discretisation tests



- steady state spectrum with only 10 bins.
- periodic compression/expansion
- need large number of bins for classical approach
- new method: rel. error 10^{-4}


25/28

Application

- explode SN with typical CR spectrum
- adiabatic gains/losses, energy dependent diffusion

spectral CRs in two setups

- magnetic fields keep more gas in diffuse state
- cosmic rays can drive outflows with mass loading of order unity
- cosmic ray-driven outflows are warm and smooth, slowly lifted
- spectral distribution of CRs in hydro simulations
 - more accurate transport
 - better connection to observations

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No CRAGSMAN-646955)