Particle injection at weak ICM shocks

Hyesung Kang (Pusan National University) Dongsu Ryu & Ji-Hoon Ha (UNIST)

Ha et al. 2018

Proton Acceleration in Weak Quasi-parallel Intracluster Shocks: Injection and Early Acceleration $M_s \le 4$, $M_A \le 40$,

Kang et al. 2019

Electron Preacceleration in Weak Quasi-perpendicular Shocks in **High-beta** Intracluster Medium

 $\beta \approx 50 - 100$

Ryu et al. 2019

A Diffusive Shock Acceleration Model for Protons in Weak Quasi-parallel Intracluster Shocks

Physics of Collisionless shocks

Astrophysics

Space Plasma Physics

Supernova Remnant
Pulsar Wind Nebula
Stellar Wind
Galactic Wind
AGN jet, GRB
Accretion Disk
ICM shocks

DSA SDA Fermi II Reconnection

Earth's bow shock
Magnetosphere
Interplanetary shocks
Termination shock
Solar fare, CME

Nonlinear DSA
CR Composition
CR Propagation
E_max: Hillas Diagram
Radiative Processes
Magnetic Field Amplification

Injection

Microinstabilities: dispersion relation, firehose, Buneman, two-stream, AIC, ... Wave excitation:

Langmuir, whistlers, Alfven waves, ... Wave-particle interactions
Ion/electron reflection: shock criticality

CR transport EQ (Fokker Planck), Hybrid, PIC, MHD-PIC simulations

Outline

1. What is the injection problem?

For non-shock-experts

- 2. Thermal leakage injection recipe
- 3. Ion injection: reflection + SDA + wave generation
- 4. Electron injection: reflection + SDA + wave generation
- 5. Summary (slide # 35)

DSA: Fermi first order process at Q_{\parallel} shocks

Shock front

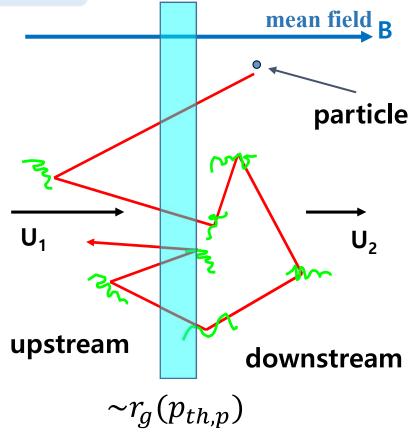
$$\frac{\Delta p}{p} \sim \frac{u_1 - u_2}{v}$$
 at each shock crossing

Simple prediction:

test-particle limit solution

$$f_{\text{test}}(p) \propto p^{-q_{\text{test}}}$$
 :power-law

$$q_{\text{test}} = \frac{3u_1}{(u_1 - u_2)}$$

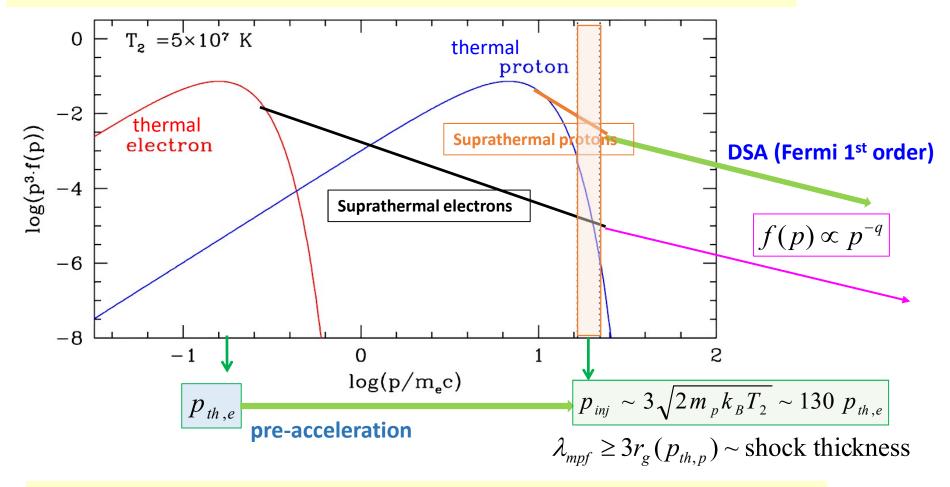


Requirement for shock crossing

shock thickness $\sim \lambda_{mpf} > 3r_g(p_{th,p})$

⇒ preacceleration & injection of particles into DSA needs to be investigated.

Proton & Electron pre-acceleration to be injected to DSA?



Protons (electrons) need to be pre-accelerated from $p_{th,p}$ ($p_{th,e}$) to p_{inj} in order to get injected into DSA process.

Understanding kinetic plasma processes in the shock front is important.

Thermal Leakage Injection for Q-par shocks

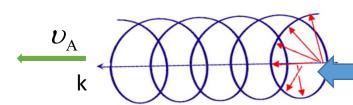
Malkov and Volk 1995, 1998
Malkov 1998
Upstream
Main flow

Trapping of particles by self-generated waves

→ only small fraction can be injected to DSA

Downstream

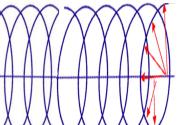
Pitch angle scattering u₂



LH circularly polarized Alfven wave (self-generated)

Pitch angle scattering x

Beam of leaking particles from downstream "thermostat"



 \mathbf{u}_1

compressed & transmitted waves with $\delta B/B_0 \approx 3-4$ at strong shock

Thermal Leakage Injection:

Phenomenological recipe

Gieseler, Jones, Kang 2000

"Transparency function": probability that particles at a given velocity can swim through turbulence and leak

10

 v/u_d

100

In case of stronger turbulence

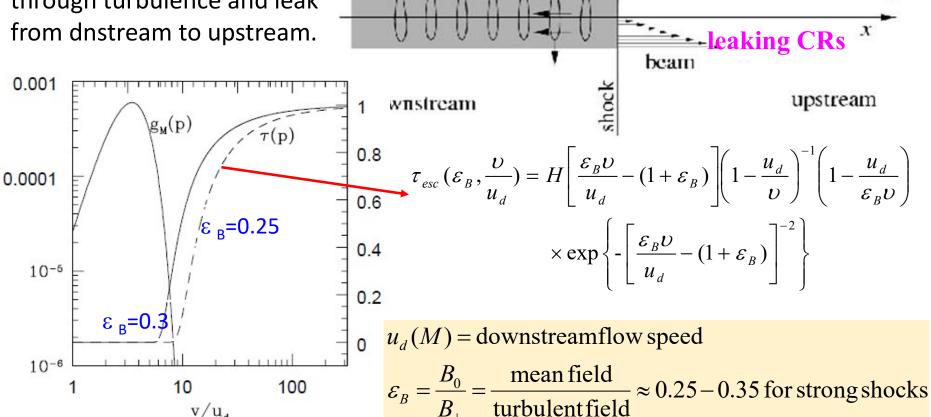
more difficult for particles to cross the shock

self-generated

resonant waves

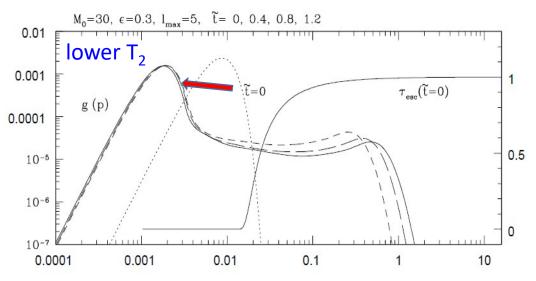
 B_0

- → larger p_inj is required
- → leads to smaller injection rates

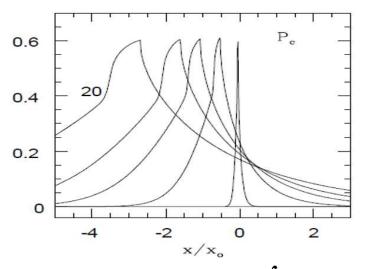


downstream

NUMERICAL STUDIES OF COSMIC-RAY INJECTION AND ACCELERATION



Kang, Jones, Gieseler, 2002

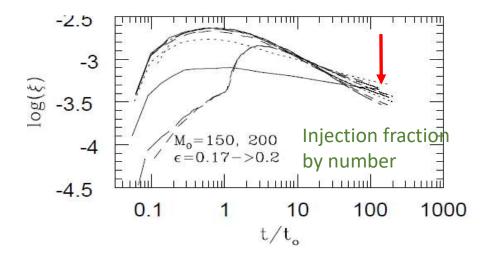


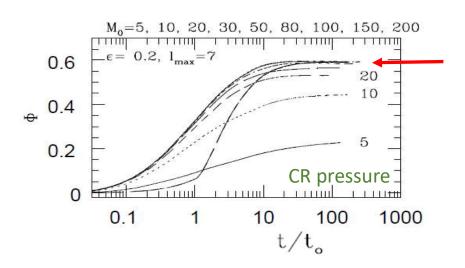
As the CR pressure increases,

1. Posthsock temperature decreases (T₂ ↓)

 $\Phi(t) = \frac{\int dx E_{CR}(x,t)}{0.5 \rho_0 V_s^3 t}$

- 2. The subshock weakens and the injection rate decreases accordingly.
- 3. The postshock CR pressure reaches an approximate time-asymptotic value.





In "fluid" simulations

Instead of following individual particle trajectories and evolution of fields

- → diffusion approximation (isotropy in local fluid frame is required)
- \rightarrow **Diffusion-convection equation** for f(p) = isotropic part

$$\frac{\partial f}{\partial t} + (u + u_w) \frac{\partial f}{\partial x} = \frac{1}{3} \frac{\partial}{\partial x} (u + u_w) \cdot p \frac{\partial f}{\partial p} + \frac{\partial}{\partial x} [\kappa(x, p) \frac{\partial f}{\partial x}] + Q(x, p)$$

$$u_w \approx \text{wave drift speed} \approx V_A(x) = B(x) / \sqrt{4\pi\rho}$$
: MFA

$$\kappa(x, p) \approx \kappa^* p \propto B(x)^{-1}$$
: Bohm - like diffusion

Q(x, p) = injection of suprathermal ptls into Fermi process

DIFFUSIVE SHOCK ACCELERATION IN TEST-PARTICLE REGIME

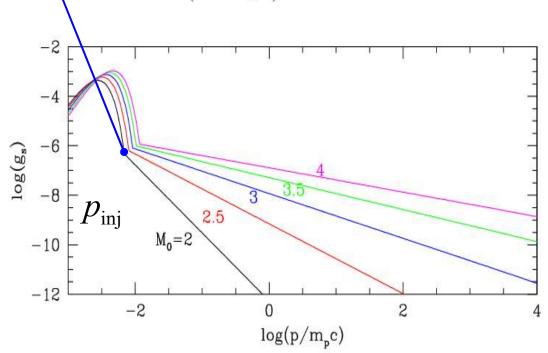
$$f_{\rm tp}(x_{\rm s},\,p) \approx f_{\rm inj} \cdot \left(\frac{p}{p_{\rm inj}}\right)^{-q_{\rm tp}}$$

For weak ICM shocks

Kang & Ryu 2010

$$f_{\rm inj} = f(p_{\rm inj}) = \frac{n_2}{\pi^{1.5}} p_{\rm th}^{-3} \exp\left(-Q_{\rm inj}^2\right), \quad Q_{inj} \text{ determines the normalization.}$$

$$p_{\rm inj} \approx 1.17 m_p u_2 \left(1 + \frac{1.07}{\epsilon_B}\right) \equiv Q_{\rm inj}(M, \epsilon_B) p_{\rm th}$$
, Analytic solution depends on Q_{inj}



 $Q_{inj} > 3.8$ to be in test-particle regime

CR injection fraction

$$\xi_{\rm M} = \frac{4}{\sqrt{\pi}} \frac{Q_{\rm inj}^3}{(q-3)} \exp\left(-Q_{\rm inj}^2\right)$$

depends only on $Q_{\rm inj}$

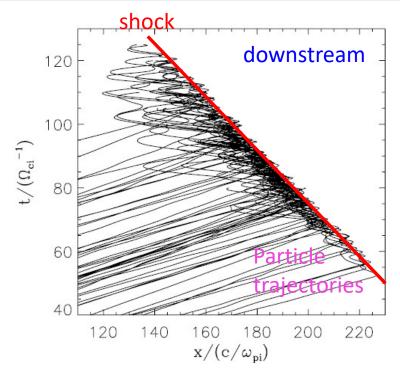
Caprioli & Spitkovsky 2014 (Hybrid simulations)

$$Q_{\text{inj}} \approx 3 - 3.5$$

$$\xi \approx 10^{-4} - 10^{-3}$$

$$\Rightarrow \varepsilon_B \approx 0.23 - 0.27$$

THE ACCELERATION OF THERMAL PROTONS AT PARALLEL COLLISIONLESS SHOCKS: THREE-DIMENSIONAL HYBRID SIMULATIONS



Locations of 50 accelerated protons.

They gain their initial energy at the first reflection off the shock.

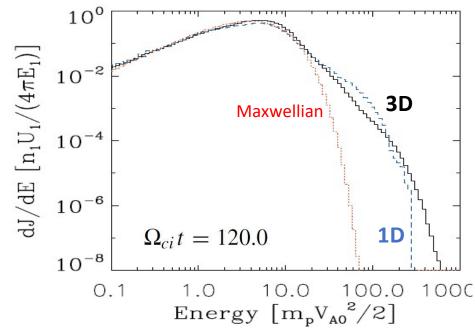
Well established in space physics community, Scholer 1990, Scholer & Terasawa 1990, Giacalone et al. 1992 **Guo & Giacalone 2013**

$$M_{A0} = V_x/V_{A0} = 4.0$$

$$\theta_{Bn} = 0^\circ, \ \beta \approx 1$$

Turbulent B fields can be locally Q-perp even for Q-par shocks.

- → Protons go through SDA at shock transition zone.
- → They are reflected upstream at the shock Not consistent with thermal leakage

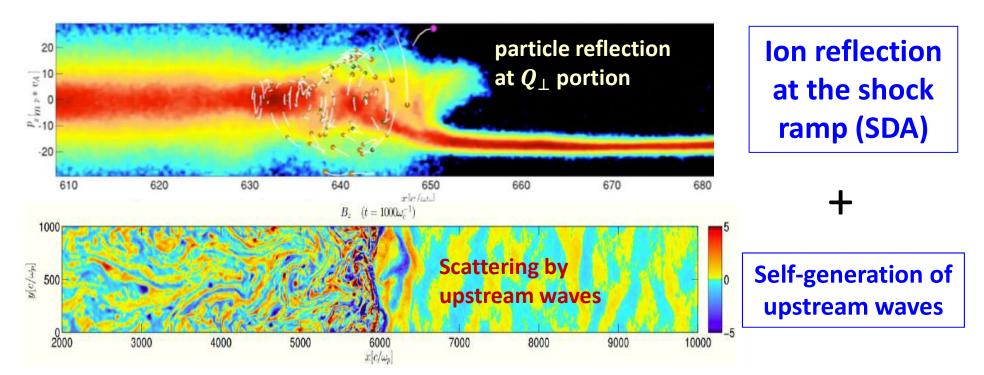


2D & 3D hybrid simulations by Caprioli & Spitkovsky 2014a, b, c

+ Minimal model for ion injection by Caprioli et al 2015.

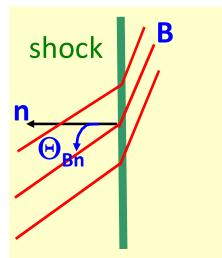
Two crucial ingredients for Proton Acceleration at $oldsymbol{Q}_{\parallel}$ shocks

- 1) Injection: multiple cycles of [reflection + SDA]
- 2) Scattering by upstream waves (pre-existing or self-generated)
 - → return back to the shock → DSA

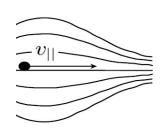


Two ways to reflect protons/electrons at the shock

(1) magnetic mirror reflection due to compression of transverse magnetic fields



$$m \frac{dv_{\parallel}}{dt} = -\frac{mv_{\perp}^2}{2B} \nabla_{\parallel} B$$
 mirror force due to gradient of B



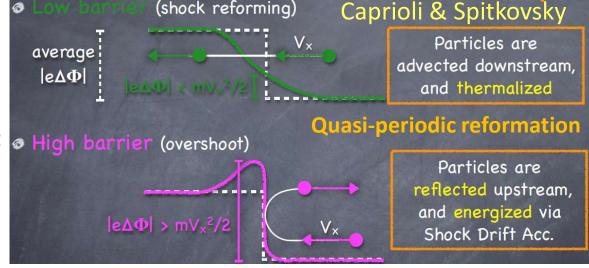
- dominant at $oldsymbol{Q}_{\perp}$ shock
- more important at low β shock

(2) Shock potential barrier:

- -decelerates ions
 but accelerates electrons
- -ions are reflected by overshoot

$$e\Delta\phi \approx \alpha(M_{\rm s},t) \frac{m_i v_{\rm sh}^2}{2},$$

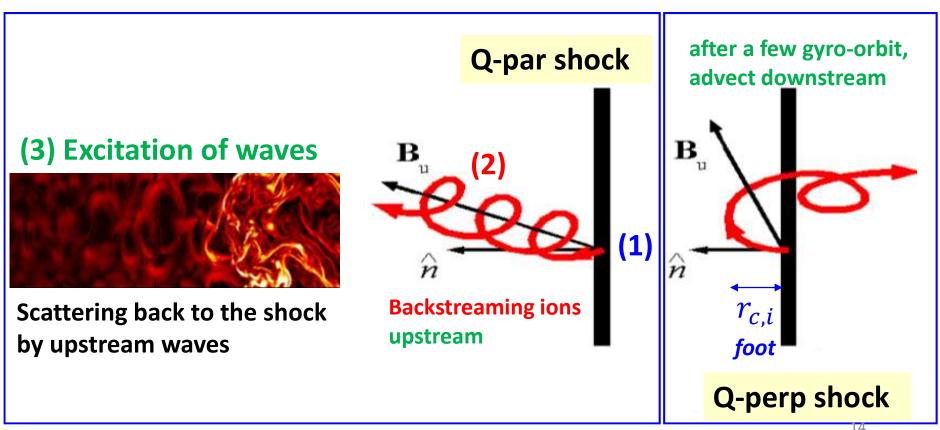
- dominant at $oldsymbol{Q}_{\parallel}$ shock



Both magnetic field compression & shock potential drop depends on M_s Reflection fraction decreases with decreasing M_s

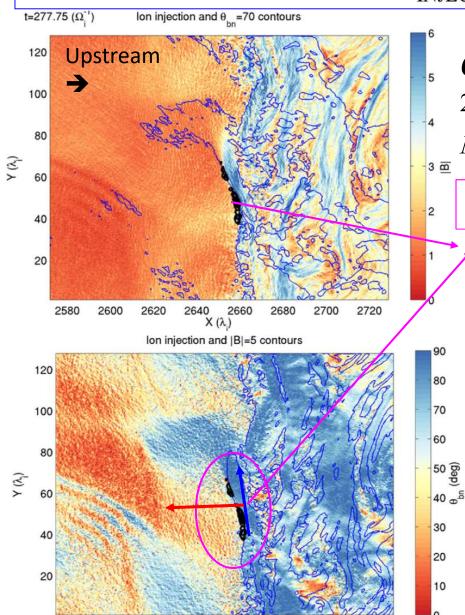
Key elements for proton injection to DSA at Q_{\parallel} shocks

- (1) Reflection at the shock & energy gain near the front via SDA
- (2) Backstreaming of ions upstream along Bo
- relative drift between reflected ions & incoming particles: free E source
- (3) Self-excitation of upstream waves: e.g. whistlers & Alfven waves
- → Scattering back to the shock → Injection to Fermi I acceleration



CIOS

ION ACCELERATION AT THE QUASI-PARALLEL BOW SHOCK: DECODING THE SIGNATURE OF INJECTION



2580

Sundberg et al. 2016

Cluster mission data

2D Hybrid simulations:

$$M_A = 8.1, \ \theta_{Bn} = 30^{\circ}, \beta_i = 0.5$$

Transition from Q_{\parallel} to Q_{\perp} obliquity

- Ion injection occurs
- at sharp B field gradient
- Θ_{Bn} changes from perp to parallel

At the trailing edge of a ULF wave

- → specular reflection off a shock potential at locally perp. field orientation.
- escape upstream at parallel orientation

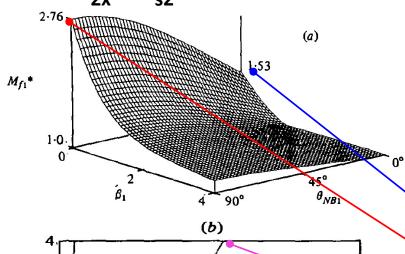
Ion Injection=
specular reflection at Q_{\perp} portion

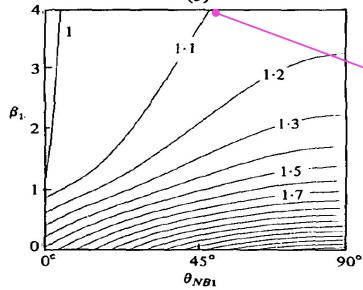
+ upstream streaming at Q_{\parallel} portion

Shock Criticality: ion reflection

Edmiston & Kennel 1984

First fast critical Mach number:





Number flux:

$$N_1 U_{1x} = N_2 U_{2x};$$

Momentum flux:

$$\begin{split} N_1(U_{1x}^2 + V_1^2) + B_{1z}^2/8\pi M &= N_2(U_{2x}^2 + V_2^2) + B_{2z}^2/8\pi M, \\ B_{1z}B_x/4\pi M &= B_{2z}B_x/4\pi M - N_2U_{2x}U_{2z}, \\ 0 &= N_2U_{2x}U_{2y} - B_xB_{2y}/4\pi M; \end{split}$$

Energy flux:

$$\begin{split} N_1 U_{1x} (\gamma V_1^2/(\gamma-1) + \tfrac{1}{2} U_{1x}^2) + U_{1z} B_{1z}^2/4\pi M \\ &= N_2 U_{2x} [\gamma V_2^2/(\gamma-1) + \tfrac{1}{2} U_{2x}^2 + \tfrac{1}{2} U_{2z}^2] + B_{2z}/4\pi M (B_{2z} U_{2x} - B_x U_{2z}). \end{split}$$

 $\beta = 0$ limit

$$M_f^* = 1.53$$
 for $\theta_{Bn} = 0^\circ$ Parallel shocks

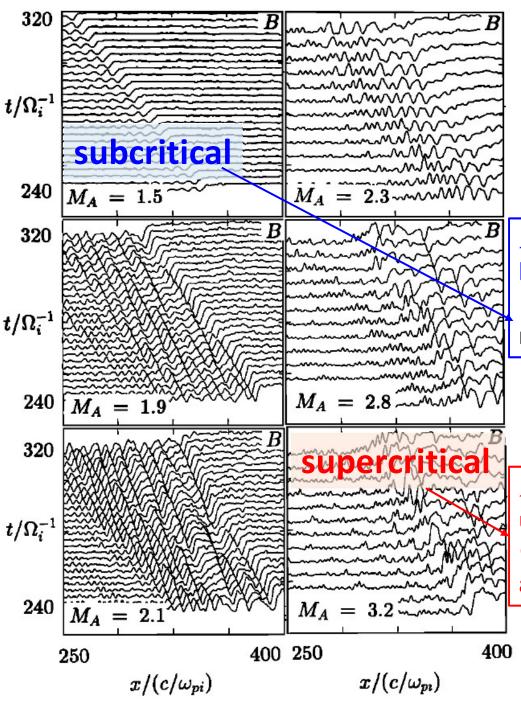
$$M_f^* = 2.76 \text{ for } \theta_{Bn} = 90^\circ$$
 Perp. shocks

 $\beta >> 1$ limit,

$$M_f^* \sim 1.0 - 1.1 \text{ for } \theta_{Bn} < 45^\circ$$

$$M_f^* \sim 1.1-1.2 \text{ for } \theta_{Bn} > 45^{\circ} Q_{\perp} \text{ shocks}$$

This fluid approach does not account for kinetic processes in shock transition.



SOURCES OF MAGNETOSHEATH WAVES
AND TURBULENCE
Omidi + 1994

N. Omidi,* A. O'Farrell** and D. Krauss-Varban***

1D hybrid simulations Low M_A Q_{\parallel} shocks

$$\theta_{Bn} = 30^{\circ}, \ \beta_{i} = 0.5$$

 M_A = 1.5 : shock is steady & smooth, lacking an overshoot.

→ Ion reflection is inefficient, maybe little particle acceleration

 M_A = 3.2 : shock is unsteady & undergoes self-reformation.

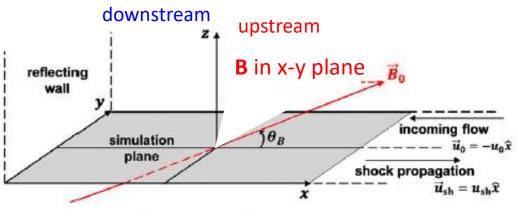
→ Efficient ion reflection & particle acceleration

1D PIC simulations for Q_{\parallel} high β shocks (proton injection to DSA)

Table 1. Model Parameters for the Simulations

Ha, Ryu, Kang + 2018

$Model Name^a$	$M_{\rm s} \approx M_{\rm f}$	$M_{ m A}$	v_0/c	$ heta_{ m Bn}$	β	$T_e = T_i[K(\text{keV})]$	$\frac{m_i}{m_e}$
$M3.2^d$	3.2	29.2	0.052	13°	100	$10^8(8.6)$	100
M2.0	2.0	18.2	0.027	13°	100	$10^8(8.6)$	100
M2.15	2.15	19.6	0.0297	13°	100	$10^8(8.6)$	100
M2.25	2.25	20.5	0.0315	13°	100	$10^8(8.6)$	100
M2.5	2.5	22.9	0.035	13°	100	$10^8(8.6)$	100
M2.85	2.85	26.0	0.0395	13°	100	$10^8(8.6)$	100
M3.5	3.5	31.9	0.057	13°	100	$10^8(8.6)$	100
M4	4.0	36.5	0.066	13°	100	$10^8(8.6)$	100



$$M_0 \equiv \frac{u_0}{c_{\rm s}} = \frac{u_0}{\sqrt{2\Gamma k_B T_i/m_i}}.$$

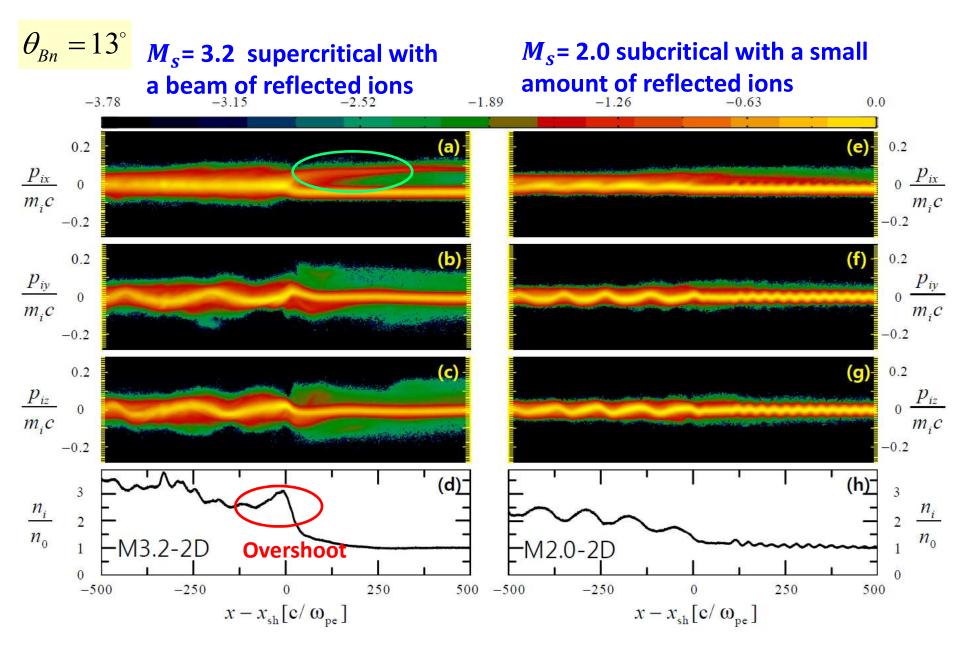
$$M_{\rm s} \equiv \frac{u_{\rm sh}}{c_{\rm s}} \approx M_0 \frac{r}{r-1}$$

$$M_{
m A} \equiv rac{v_{
m sh}}{v_{
m A}} ~pprox \sqrt{eta} \cdot M_{_S}$$

$$\Omega_{ci} \propto \frac{\omega_{pe}}{\sqrt{\beta}}$$

2D Run: $\frac{L_x[c/w_{pe}]}{2 \times 10^4} \frac{L_y[c/w_{pe}]}{60}$

Simulation frame = downstream rest frame



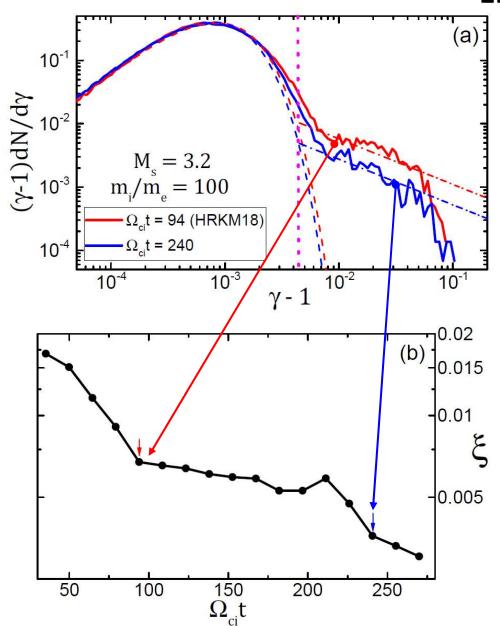
Time-varying overshoot in $e\Phi$ & B & cyclic reformation of the shock

$$r_{\rm L,i} \equiv \frac{m_i v_0 c}{e B_0} = M_{\rm A,0} \sqrt{\frac{m_i}{m_e}} \frac{c}{w_{\rm pe}} \sim 200 \frac{c}{w_{\rm pe}}$$
 19

$\theta_{Bn} = 13^{\circ}$ $(0-1)r_{L,i}$, $(1-2)r_{L,i}$ and $(5-6)r_{L,i}$ Mach number dependence $w_{\rm pe}t \approx 3.4 \times 10^5$ $\Omega_{\rm ci}t \approx 90$ (a) M2.0 (b) M2.25 Near downstream 10-1 Far downstream $(\gamma-1)\frac{dN}{d\gamma}$ 10⁻² 10-2 10 10-4 (d) M3.2 (c) M2.5 10-1 10-1 $(\gamma - 1) \frac{dN}{d\gamma} 10^{-2}$ 10-10-2 10-2 Injection momentum $p_{inj} \approx 2.7 p_{th}$, where $p_{th} = \sqrt{2m_i k_B T_2}$ 10-2 Injection fraction Critical ξ 10⁻³ M_f^* ~2.25 $\xi \equiv \frac{1}{n_2} \int_{p_{\min}}^{p_{\max}} 4\pi f(p) p^2 dp,$ Mach number 10-4 $p_{min} = \sqrt{2} p_{ini}$ M_s

DSA beyond injection?

We attempted to perform longer 1D PIC simulations.



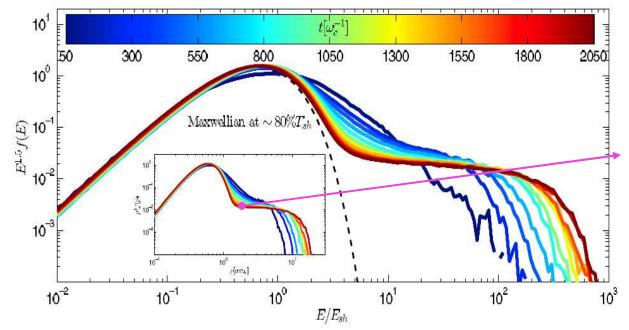
$$M_s = 3.2, \ \theta_{Bn} = 13^{\circ}$$

$$p_{\rm inj} = Q_{\rm i} \cdot p_{\rm th,p}$$

$$Q_i = 2.7 \rightarrow 3.0$$

The injection fraction, $\xi(t)$, indeed decreases with time. However, long-term evolution of $\xi(t)$ can be studied with other methods such as hybrid simulations.

Time evolution of downstream spectrum

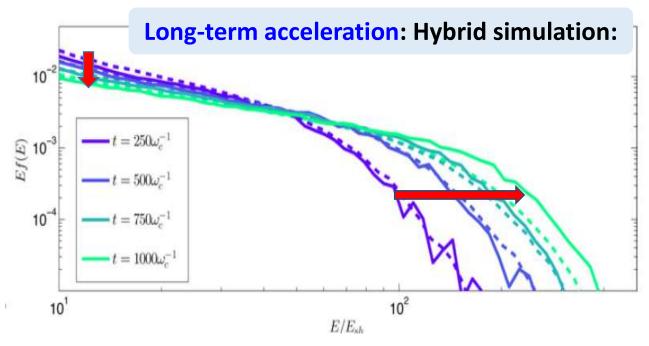


Caprioli & Sptikovsky 2014

$$\frac{E_{CR,2}}{E_{CR,2} + E_{th,2}} \approx 0.01 - 0.1$$

Cooled Maxwellian + DSA power-law above p_{inj}

 $_{10^3}^{\Box}$ Hybrid: $Q_i \sim 3 - 3.5$



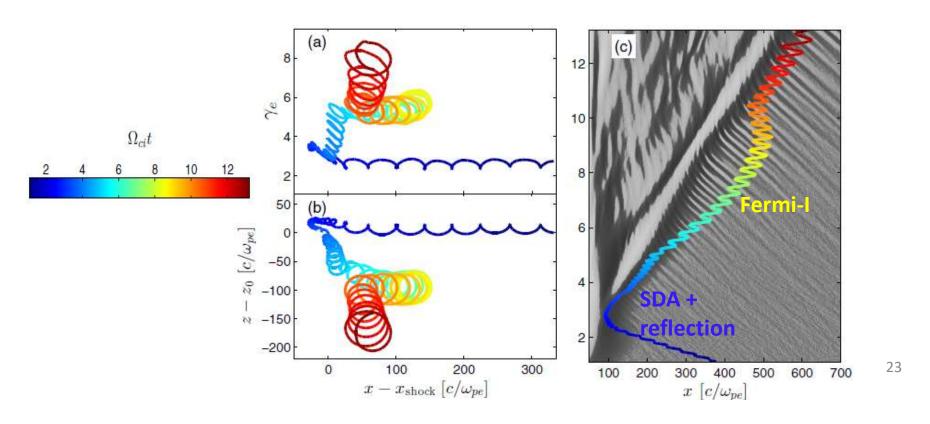
As the spectrum extends to higher p_{max} in time, amplitude of $f(p_{inj})$ decreases.

$$\Rightarrow \eta \equiv \frac{E_{CR}u_2}{1/2\rho V_s^3} ??$$

Dongsu' talk tomorro₩

Electron pre-acceleration in weak Q-perp shocks in high beta ICM cf. Guo et al. 2014a, b

- 1. Reflection by magnetic deflection (mirror) at the shock ramp
- 2. Shock Drift Acceleration (SDA) along the shock surface
- 3. T anisotropy ($T_{e_{\parallel}} > T_{e_{\perp}}$) due to backstreaming electrons
- 4. Generation of waves via the Electron Firehose Instability (EFI)
- 5. Fermi-like acceleration bwt the shock and upstream waves

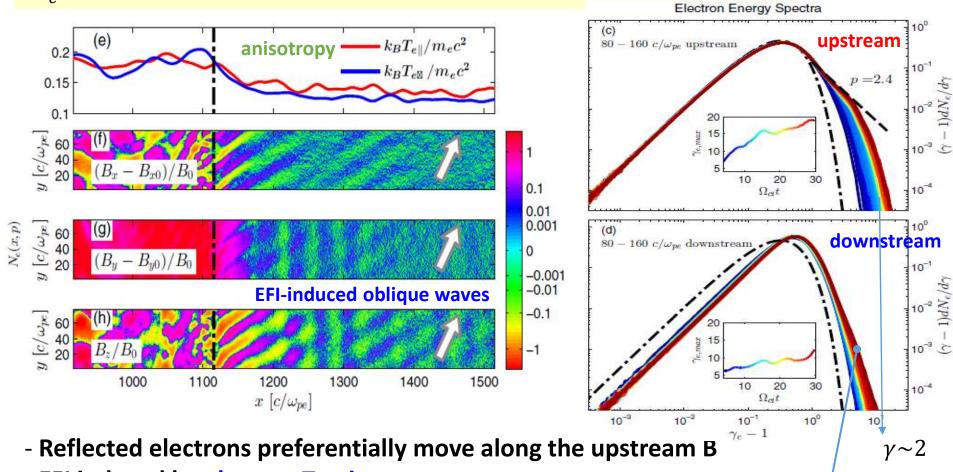


Guo et al. 2014a, b

Electron pre-acceleration in weak ICM shock

2D PIC (TRISTAN-MP)

$$\frac{m_i}{m_e} = 100, \theta_{Bn} = 63^o, T = 10^9 K (86 keV), M_s = 3 (M_A \sim 12), \beta = 20$$



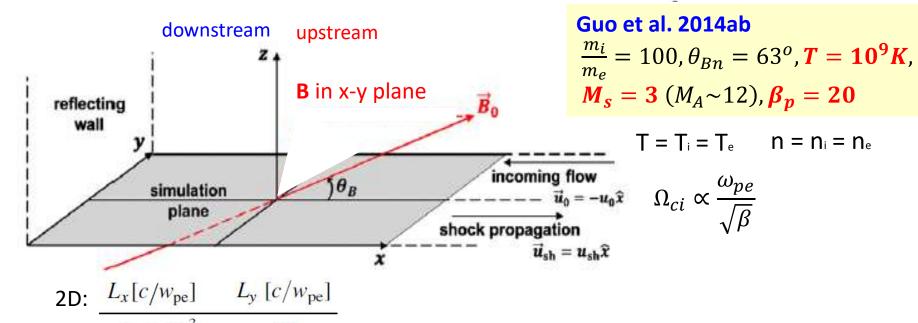
- EFI induced by electron T anisotropy.
- Upstream electrons are efficiently accelerated (SDA+Fermi-I process by upstream waves).

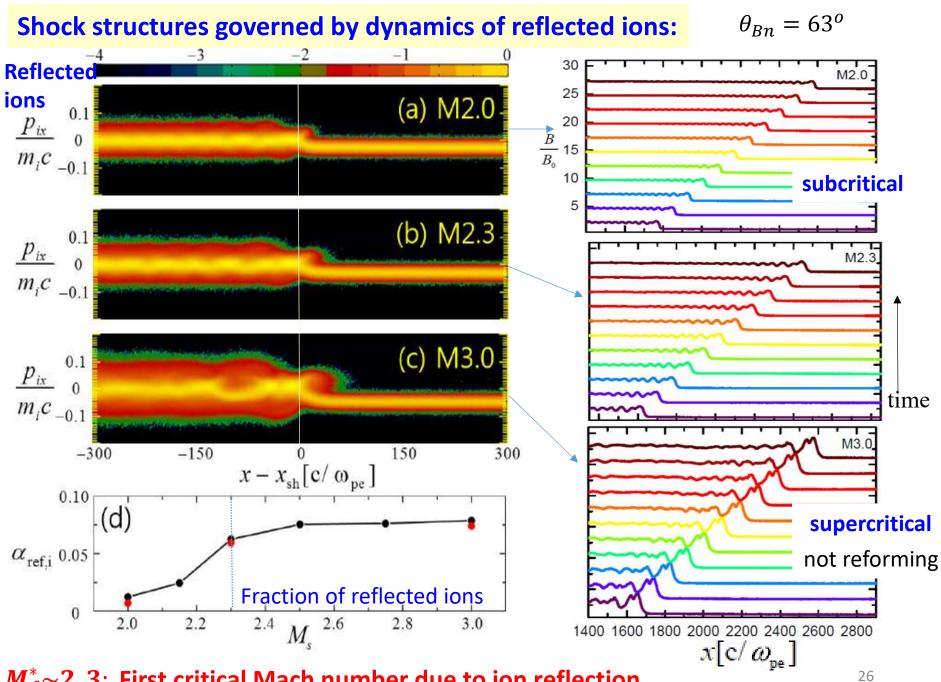
2D PIC simulations for Q-pep shocks (electron pre-acceleration)

Table 1. Model Parameters for the Simulations

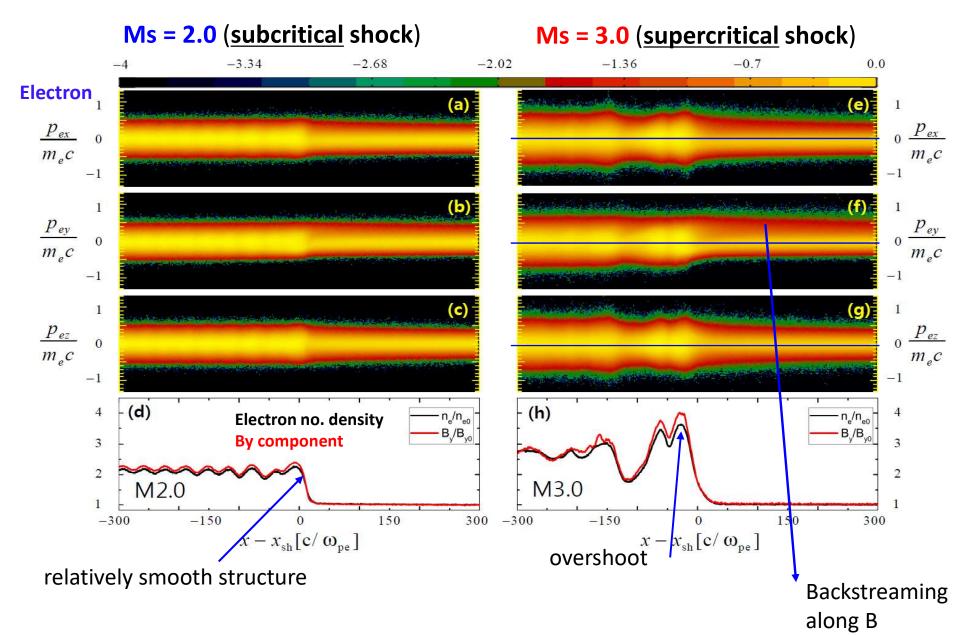
Kang, Ryu, Ha 2019

${\rm Model~Name}^a$	$M_{ m s}$	$M_{\rm A}$	v_0/c	$\theta_{ m Bn}$	β	$T_e = T_i[\mathrm{K(keV)}]$	$\frac{m_i}{m_e}$
$M2.3^d$	2.3	21	0.0325	63°	100	$10^8(8.6)$	100
M2.0	2.0	18.2	0.027	63°	100	$10^8(8.6)$	100
M2.15	2.15	19.6	0.0297	63°	100	$10^8(8.6)$	100
M2.5	2.5	22.9	0.035	63°	100	$10^8(8.6)$	100
M2.75	2.75	25.1	0.041	63°	100	$10^8(8.6)$	100
M3.0	3.0	27.4	0.047	63°	100	$10^8(8.6)$	100





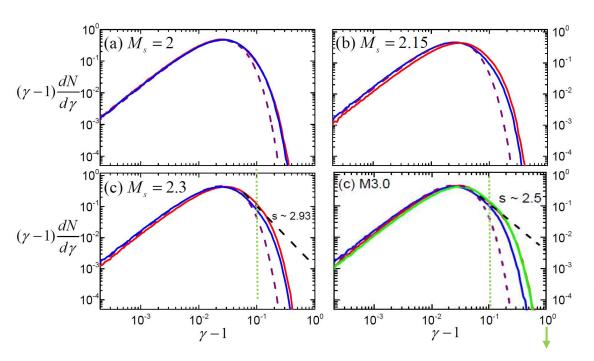
 $M_f^* \sim 2.3$: First critical Mach number due to ion reflection



 $M_f^* \sim 2.3$: First critical Mach number due to ion reflection

Evolution of upstream electron energy spectra

Blue: $\Omega_{ci}t = 10$, Red: $\Omega_{ci}t = 30$, Green: $\Omega_{ci}t = 60$



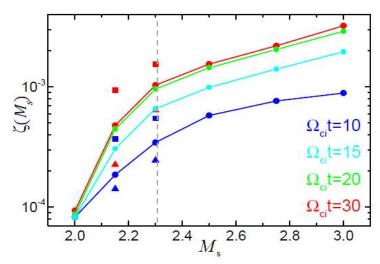
- -Subcritical shocks: only single SDA
- -Supercritical shocks: multiple cycles of SDA suprathermal tail via Fermi-like acceleration
- -Pre-acceleration is saturated due to lack of $\,$ power in longer λ
- -Pre-acceleration may not go all the way to injection to DSA

Suprathermal fraction

$$\zeta \equiv \frac{1}{n_2} \int_{p_{\rm spt}}^{p_{\rm max}} 4\pi \langle f(p,t) \rangle p^2 dp,$$

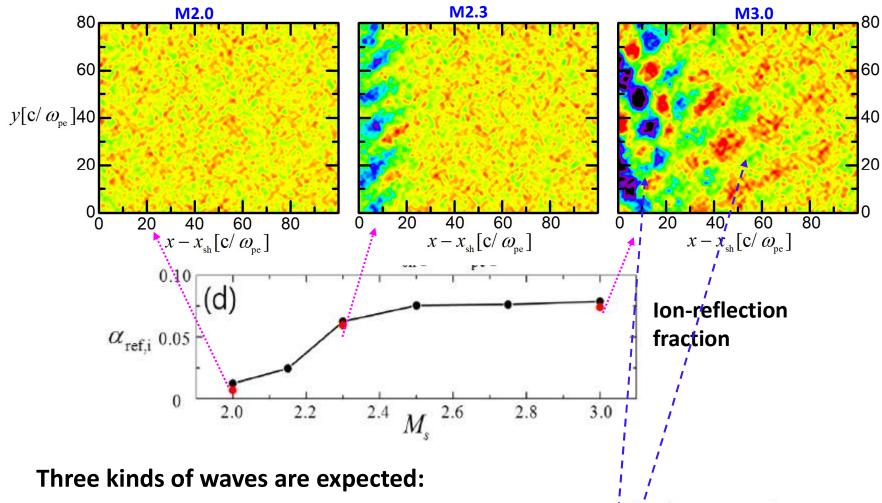
$$p_{spt} \sim 3.3 p_{th,e}$$
: suprathermal

 $p_{inj} \sim 3.3 p_{th,p}$: injection

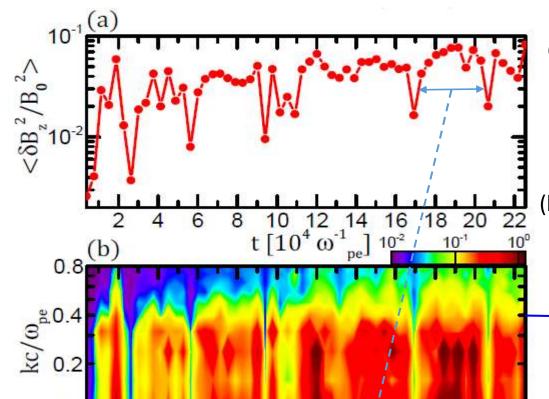


- suprathermal fraction increases with Ms
- but saturates Ω_{ci} t>20

$$M_{ef}^* \sim 2.3$$



- 1. phase-standing whistlers excited by reflected ions $kc/\omega_{
 m pi} \sim 1$
- 2. Non-propagating ($\omega_r=0$) oblique waves by EFI $\sqrt[6]{kc/\omega_{
 m pe}} \sim 0.4$
- 3. Propagating ($\omega_r \neq 0$) oblique waves by EFI : weak



Quasi-periodic bursts of reflection:

$$tw_{\rm pe} \sim 2 \times 10^4 - 4 \times 10^4$$

 $t\Omega_{\rm ce} \sim 500 - 1000$
 $t\Omega_{\rm ci} \sim 5 - 10$

(but shock is steady, not self-refoming)

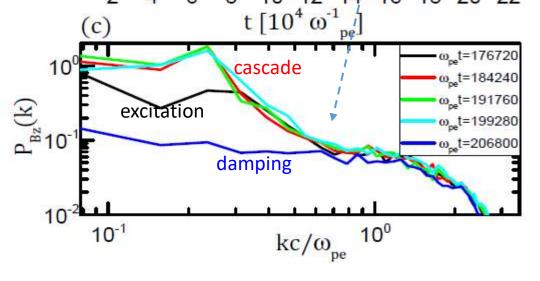
EFI-induced oblique waves

$$kc/\omega_{\rm pe} \sim 0.4$$

Whistlers induced by reflected ions

$$kc/\omega_{\rm pi} \sim 1$$

- → Growth of T anisotropy
- → Excitation of the EFI
- → Growth of oblique waves
- → Inverse cascade to smaller k
- → Damping of waves



10 12 14

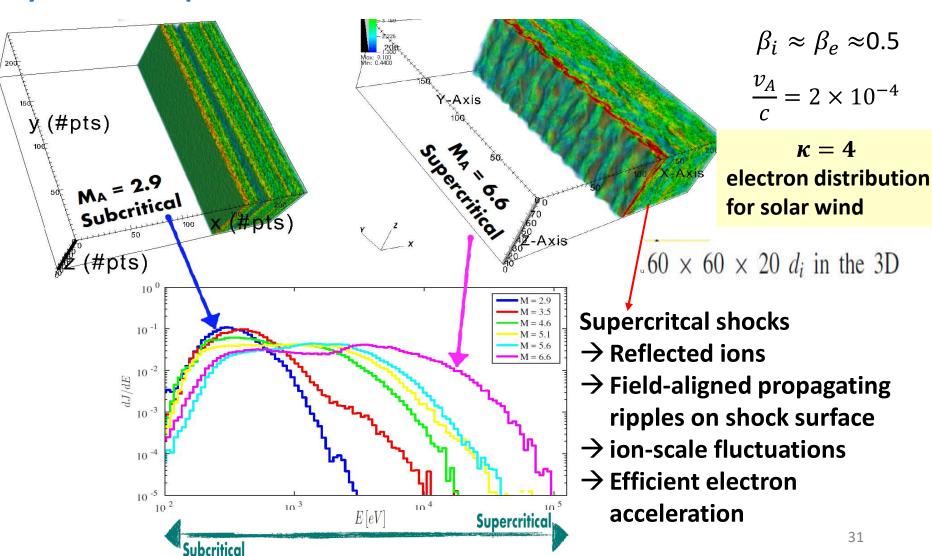
16 18 20 22

0.1

Electron acceleration at quasi-perpendicular shocks in sub- and supercritical regimes: 2D and 3D simulations

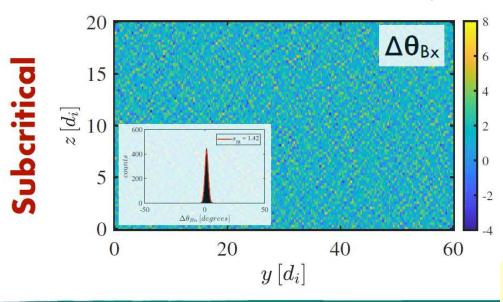
Hybrid + test-particle electrons

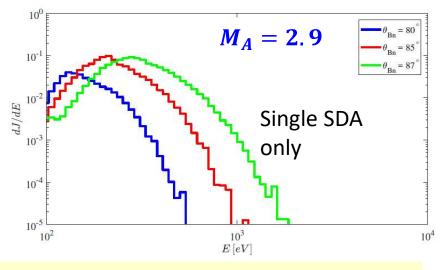
Domenico Trotta & David Burgess 2019



Acceleration efficiency with $heta_{Bn}$

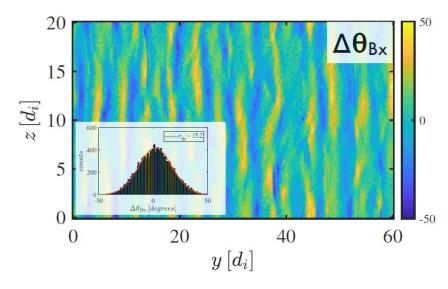
Domenico Trotta & David Burgess 2019

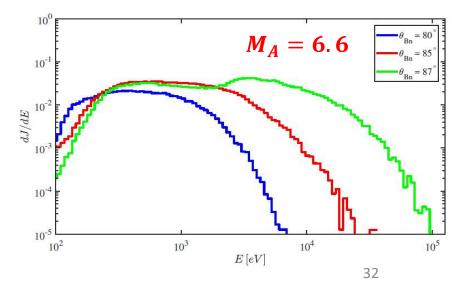




critical Mach number: $M_{A,c} \approx 3.5$

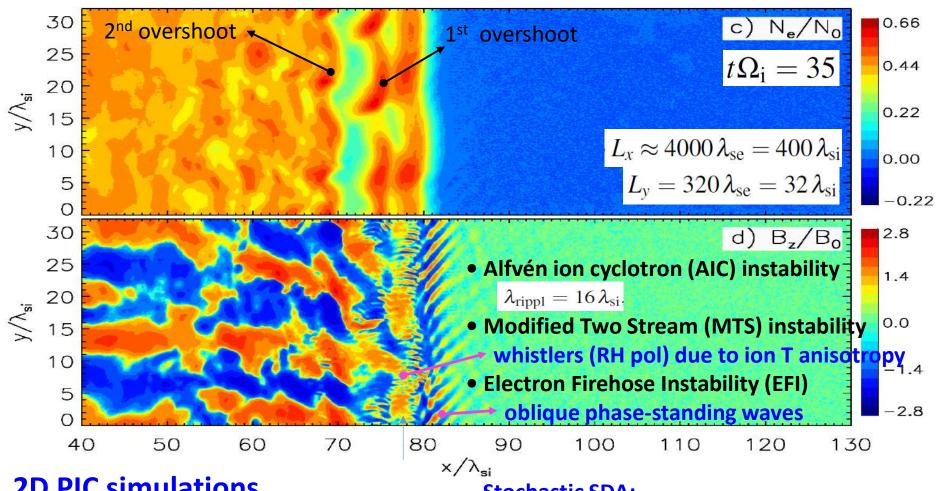
Shock surface fluctuations on ion scales → lead to higher energization of electrons





Electron Acceleration at Rippled Low Mach Number Shocks

Oleh Kobzar et al., @ICRC2019 & Jacek Niemiec et al. @KAW10



2D PIC simulations

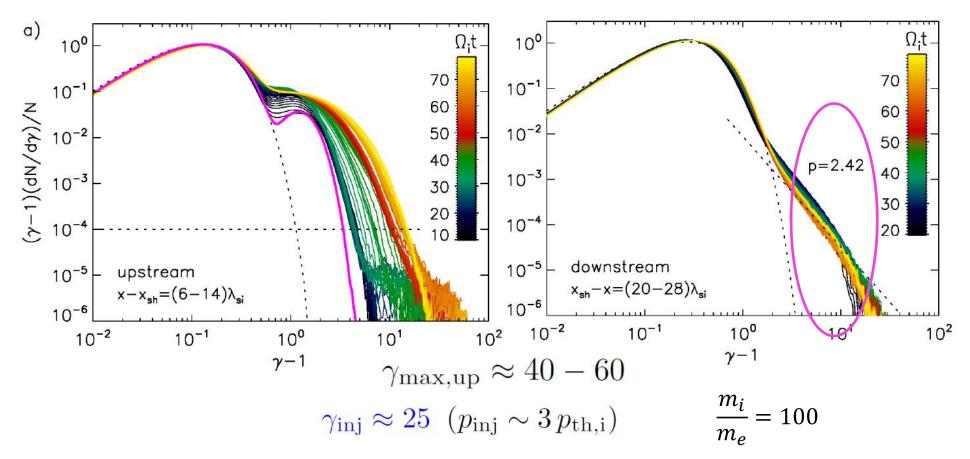
$$T_{\rm e} = T_{\rm i} \approx 5 \cdot 10^8 \,\text{K} = 43 \,\text{keV}/k_{\rm B}$$

 $M_{\rm s} \equiv v_{\rm sh}/c_{\rm s} = 3$ $M_{\rm A} = v_{\rm sh}/v_{\rm A} \simeq 6.1$
 $\beta = 5 \,(\beta_{\rm e} = \beta_{\rm i} = 2.5)$ $m_{\rm i}/m_{\rm e} = 100$

Stochastic SDA:

electrons are confined in the shock transition region by pitch-angle scattering off magnetic turbulence and gain energy from motional electric field

Oleh Kobzar et al., @ICRC2019 & Jacek Niemiec et al. @KAW10



- the presence of multi-scale turbulence, including ion-scale shock rippling modes,
- → lead to efficient electron acceleration & injection to DSA in the presence of longwave upstream turbulence
- energy gain mainly through the stochastic SDA process
- electron downstream spectrum: $E^{-2.4}$

Summary: Particle injection at weak ICM shocks

- In high β ICM, only supercritical Q_{\parallel} shocks with $M_s \geq 2.3$ may inject suprathermal protons to DSA and accelerate CR protons (Ha et al. 2018).
- In high β Q_{\perp} shocks, upstream waves are generated via Electron Firehose instability (Guo et al. 2014a,b).
- Only supercritical Q_{\perp} shocks with $M_s \geq 2.3$ may pre-accelerate suprathermal electrons via Fermi-I like process. Due to wave damping, electrons may not be injected to DSA (Kang et al. 2019).
- Ion-scale shock rippling at supercritical Q_{\perp} shocks generates multi-scale turbulence, leading to electron injection to DSA (Trotta & Burgess 2019, Niemiec et al. 2019).

What is next? DSA power-law for downstream spectrum, pre-existing turbulence, kappa-distribution, long-term evolution, ...

Acceleration processes - typical particle trajectories Niemiec + @KAW10

