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INTRODUCTION

▸ Energization of disk corona
Turbulence 

Collisionless shocks 

J. Hawley

Magnetic reconnection

Observed radiation 



NUMERICAL 
TOOLS



Modern C++14/Python3 framework for plasma simulations 
•C++ for computing kernels 
•Python3 for `driving` the simulations 

Kinetic plasma simulations: 
•turbulence 
•collisionless shocks 
•beam instabilities 
•arXiv: 1906.06306

github.com/natj/runko
Nättilä 2019
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TOOLS

ENTERING THE EXASCALE ERA

▸Exascale = 100 million (GPU) cores 
▸We need to rethink parallelization

https://www.top500.org/lists/2019/06/

https://www.top500.org/lists/2019/06/


TOOLS

RUNKO: SIMULATION FRAMEWORK
▸ Computational grid with tiles 
▸ MPI communications 

▸ Electromagnetic module 
▸ FDTD solver 

▸ Particles/Vlasov module 
▸ Pusher, Depositer, Interpolator



TOOLS

▸Conway’s Game of Life (2D CA)

Images:  https://thatscienceguy.tumblr.com/post/96312770512/john-conway-first-theorized-that-it-would-be

https://thatscienceguy.tumblr.com/post/96312770512/john-conway-first-theorized-that-it-would-be


CORGI GRID INFRASTRUCTURE

CORGI GRID INFRASTRUCTURE
▸C++ Object oRiented Grid Infrastructure

▸ Dynamic adaptive load balancer 
▸ Based on novel cellular automata 

(aka game of life) theory 
▸ Discrete geometric flows of 

hypersurfaces in Riemannian 
manifold 

▸ Surface tension flow given an 
arbitrary N-dimensional metric



RELATIVISTIC KINETIC 
TURBULENCE



SETUP

TURBULENT FLARES IN CORONA

NASA/JPL-Caltech

NASA's Goddard Space Flight Center/
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See also: 
Zhdankin et al. 
Comisso & Sironi
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PLASMA PARAMETERS

CHARACTERISING THE PLASMA

= 0.3▸ Warm pair plasma

▸ Strongly magnetized 

▸ low-beta plasma
={1, 5, 10, 40}

▸ Strong transverse perturbations 

▸ relativistic bulk motions



RESULTS

density



RESULTS

density



RESULTS

density



RESULTS

k-5/3

k-4

p-1.8

B-field power spectra

Particle spectra
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NON-THERMAL PARTICLE ACCELERATION

Magnetic reconnection 

• pre-accelerates 
particles to Ɣ ~σ

See Comisso & Sironi 2018, 2019



NON-THERMAL PARTICLE ACCELERATION

1) Reconnection injection 
2) Diffusive particle 
acceleration 

•accelerates particles to 
a power-law 

•Fermi-II -like process

See Comisso & Sironi 2018, 2019



PARTICLE ACCELERATION = DISSIPATION

NON-THERMAL PARTICLE ACCELERATION

See Comisso & Sironi 2018, 2019

jz current

density

Injection Diffusion



PARTICLE ACCELERATION = DISSIPATION

NON-THERMAL PARTICLE ACCELERATION

thermal (non-injected)

non-thermal (injected)



TURBULENT FLARES 
WITH RADIATIVE LOSSES



RADIATIVE TURBULENCE

RADIATIVE DRAG Synchrotron radiation

Inverse Compton scattering



RADIATIVE TURBULENCE

STRONGLY COOLING REGIME
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RADIATIVE TURBULENCE

No radiation Weakly cooling regime Strongly cooling regime

Radiation “ceiling”

Cooling non-thermal 
component

Bulk-motion dragged & 
volumetric dissipation
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RADIATIVE TURBULENCE: FLICKERING SHEETS

No radiation Weakly cooling regime Strongly cooling regime

< γ>

γmax Non-thermal volumetric 
radiation output Variable flickering sheets



CONCLUSIONS

TURBULENCE IN COLLISIONLESS PLASMA

▸ Kinetic turbulent shows similar properties as MHD turbulence 
▸ with an addition of a new regime: kinetic scales (k-4) 

▸ Shows a novel dissipation mechanism: non-thermal particle 
acceleration 
▸ Particles are accelerated inside reconnecting current sheets 
▸ Larmor radius increases and they decouple from “bulk” plasma 
▸ leads to Diffusive Particle Acceleration (Fermi-II) 

▸ Radiation  bath adds an additional energy sink 
▸ weakly cooling regime (only non-thermal population affected) 
▸ intermediate transitional regime (current sheets start to dissipate) 
▸ strongly cooling regime (bulk motions also affected)


