

JOONAS NÄTTILÄ KINETIC SIMULATIONS OF RELATIVISTIC TURBULENT FLARES: NUMERICS, PHYSICS, AND RADIATIVE EFFECTS

Collaborators: Andrei Beloborodov

INTRODUCTION TO

ASTROTURBULENCE

PLASMA TURBULENCE IN ASTROPHYSICS

PLASMA TURBULENCE IN ASTROPHYSICS

INTRODUCTION

Observed radiation

NUMERICAL TOOLS

github.com/natj/runko

Nättilä 2019

Modern C++14/Python3 framework for plasma simulations

- •C++ for computing kernels
- Python3 for `driving` the simulations

Kinetic plasma simulations:

- •turbulence
- collisionless shocks
- •beam instabilities
- •arXiv: 1906.06306

ENTERING THE EXASCALE ERA

ENTERING THE EXASCALE ERA Exascale = 100 million (GPU) cores

We need to rethink parallelization

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371

RUNKO: SIMULATION FRAMEWORK

Computational grid with tiles

- MPI communications
- Electromagnetic module
 - FDTD solver
- Particles/Vlasov module
 - Pusher, Depositer, Interpolator

TOOLS

Conway's Game of Life (2D CA)

- Dynamic adaptive load balancer
 Based on novel cellular automata (aka game of life) theory
 - Discrete geometric flows of hypersurfaces in Riemannian manifold
 - Surface tension flow given an arbitrary N-dimensional metric

RELATIVISTIC KINETIC TURBULENCE

SETUP

TURBULENT FLARES IN CORONA

SETUP

2D3V DECAYING TURBULENCE SETUP

See also: Zhdankin et al. Comisso & Sironi

Large number of particles (~10¹⁰) is needed to represent a fluid

2D3V DECAYING TURBULENCE SETUP

Large number of particles (~10¹⁰) is needed to represent a fluid

CHARACTERISING THE PLASMA

- Warm pair plasma
- Strongly magnetized
 - Iow-beta plasma

$$\theta_0 = \frac{kT_0}{m_e c^2} = 0.3$$

$$\sigma = \frac{B_0^2}{4\pi\rho_0(1+3\theta_0)c^2} = \{1, 5, 10, 40\}$$

Strong transverse perturbations

relativistic bulk motions

$$V_A = c \sqrt{\frac{\sigma}{1+\sigma}} \approx c.$$

B-field power spectra

NON-THERMAL PARTICLE ACCELERATION

Magnetic reconnection
 pre-accelerates
 particles to γ ~ σ

See Comisso & Sironi 2018, 2019

- Reconnection injection
 Diffusive particle
 acceleration
 - accelerates particles to a power-law
 - Fermi-II -like process

the diffusion coefficient in the energy space $D_\gamma,$ which may be written in a general form as

$$D_{\gamma} \approx \zeta \frac{c}{l_0} \gamma_0^2 \left(\frac{\gamma}{\gamma_0}\right)^{\psi}$$
 (28)

The characteristic γ_0 is defined by the condition that the particle Larmor radius equals the scale l_0 at which the turbulence is mildly relativistic,

$$\frac{\gamma_0 m_e c^2}{eB_0} = l_0. \tag{29}$$

See Comisso & Sironi 2018, 2019

PARTICLE ACCELERATION = DISSIPATION

See Comisso & Sironi 2018, 2019

PARTICLE ACCELERATION = DISSIPATION

TURBULENT FLARES WITH RADIATIVE LOSSES

RADIATIVE DRAG

Numerically the radiation drag force is modeled as an additional term experienced by the particle (in addition to the Lorentz force)

$$\frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = \frac{q_e}{m_e} \left(\boldsymbol{E} + \frac{\boldsymbol{v}}{c} \times \boldsymbol{B} \right) - \frac{\boldsymbol{F}_{\mathrm{rad}}}{m_e},\tag{17}$$

where $F_{\rm rad}$ is the radiation drag force. For $\gamma \gg 1$ it reduces to

$$\boldsymbol{F}_{\rm rad} = -\frac{P_{\rm rad}}{c}\boldsymbol{\beta},\tag{18}$$

correct emission mechanism. Synchrotron emission power in Teller-Hoffman frame for $\gamma \gg 1$ reduces to

$$P_{\rm synch} \approx 2\sigma_{\rm T} c \gamma^2 U_B \sin^2 \alpha.$$
 (19)

Inverse-Compton emission power is

$$P_{\rm IC} = \frac{4}{3} \sigma_{\rm KN} c U_{\rm rad} \gamma^2 \beta^2, \qquad (20)$$

where $\sigma_{\rm KN}$ is the Klein-Nishina electron cross section ($\approx \sigma_{\rm T}$ in our case).

Synchrotron radiation

Inverse Compton scattering

RADIATIVE TURBULENCE

STRONGLY COOLING REGIME

RADIATIVE TURBULENCE

becomes equal to $t_{\rm acc}$.

RADIATIVE TURBULENCE

No radiation

Weakly cooling regime

Strongly cooling regime

Radiation "ceiling"

Cooling non-thermal component

Bulk-motion dragged & volumetric dissipation

RADIATIVE TURBULENCE: FLICKERING SHEETS

No radiation

Weakly cooling regime

Strongly cooling regime

RADIATIVE TURBULENCE: FLICKERING SHEETS

No radiation

Weakly cooling regime

Strongly cooling regime

5

3

2

0.8

0.6

0.4

0.2

0.0

1000

1000

TURBULENCE IN COLLISIONLESS PLASMA

- Kinetic turbulent shows similar properties as MHD turbulence
 - with an addition of a new regime: kinetic scales (k-4)
- Shows a novel dissipation mechanism: non-thermal particle acceleration
 - Particles are accelerated inside reconnecting current sheets
 - Larmor radius increases and they decouple from "bulk" plasma
 - Ieads to Diffusive Particle Acceleration (Fermi-II)
- Radiation bath adds an additional energy sink
 - weakly cooling regime (only non-thermal population affected)
 - intermediate transitional regime (current sheets start to dissipate)
 - strongly cooling regime (bulk motions also affected)