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Motivation:

Low—lumihosity accretion disks around black holes:
Examples: Sgr A* and M87.

What do they have in common: | T5 >> g
T.o1- COulomb collision time and 1. Accretion time of the gas

accr-

In this weakly collisional plasmas, there is no obvious thermalization
mechanism.

Therefore the evolution of the energy distribution could involve non-thermal
acceleration.
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=>  As afirst approach, we can neglect the ion physics and study the
physics of the . . _ |
whistler instability assuming immobile ions (as if they had infinite
mass).



Electron acceleration (Riquelme et al 2017):

We assume that ion-scale instabilities do not play any role. Thus we give ions infinite

Mass.

Example: case B,/"'=2, kyT,/mc?=0.28.
t-s~0.7
At , there is the exponential growth of whistler v
saturate. ' |
At the same time, the growth of pressure anisotropy also
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Electron acceleration (Riquelme et al 2017):

We assume that ion-scale instabilities do not play any role. Thus we give ions infinite
mass.
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« After an amplification factor of ~3(s =3 ), the electron spectrum contains a
non-thermal power-law tail of spectral index a, ~ 3.7,

Close to the a ~ 3.5 usually inferred from radio observations of the quiescent
Sgr A*
(e.g., Yuan et al. 2003)



Electron acceleration:
But how does this electron energization work?

Anisotropic viscosity (“AV”): it is possible to show that:
dU;/dt = Ap;jq (Kulsrud et al 1983)

where U; is the internal energy of species |, and “q” is the growth rate of the

d<U_>/dt [sP]

magnetic field.

‘-2l
L E |
5.; d<lU_>/dt: —
I <qhpe> —
‘U_- -l P 1 PR [N T T TR TN N N TN T T Y T SO T
0 0.5 1.0 1.5 2.0 25 3.0
ts

accounts fairly well for the heating of the electrons

« The quantity(gAp.)
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Spectrum evolution:
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 The thermal electrons give energy to the whistler waves.

 The non-thermal electrons receive energy from the waves.
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However, for a fixed value of B, ;,;the electrons can have different temperatures
kT./mc?.
We are currently studying this dependence
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Dependence on kgT,/m_c? -> relativistic electrons regime (work in
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 There is an overall decrease in the acceleration
efficiency in the relativistic’regime:

« Although once th&gT,/m.c* > 1 regime IS reached,

there is not further decrease in the acceleration
efficiency as kgT./mc? grows.
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We see essentially the same dependence on B M

» Acceleration is most efficient for B /"~1, and it
decreases both for g,"=0.5 and 4. '

There is an overall decrease in the acceleration
efficiency in the relativistic’regime: _

Although once thégT./m.c* 2 1 regime is reached,
there is not further decrease in the acceleration
efficiency as kgT./m_c? grows.

Interestingly, |f Bis ampllfled by a factor larger than ~3
a power-law with index~3.7 is recovered.

Dependence on plasma parameters

-> relativistic electrons regime (work in
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Can ions be accelerated as well?



-0.30.

2) lon Acceleration: more than one instability

In the case of ions, under typical conditions, there is not a single electromagnetic mode
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2) lon Acceleration:

Case: B,"=0.5, kT;/m;c?=0.05, w/s=800, m;/m =2

Q

When the IC instability dominates (3"=0.5), ions show a “bumpy” power-law tail with
o~3.4.






2) lon Acceleration: spectra in different [3|
regimes
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2) lon Acceleration: spectra in different [3,

regimes
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* The origin of the tail can be investigated by analyzing the way the particles in
different parts of the tail gain their energy (similarly to what we did with
electrons).
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2) lon Acceleration: phyS|cs of the
acceleration
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2) lon Acceleration: phyS|cs of the
acceleration

* The electric field of the IC modes transfers energy from
the thermal to the non-thermal ions, similarly to what
whistler waves do it with the electrons.
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2) lon Acceleration:

Pushing m;/m_ and
/S

using 1D
simulations.
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2) lon Acceleration:

Pushing m;/m_ and

using 1D

* There is practically no difference between the ion spectra
for
different m;/m..

e Also little difference when increasing magnetization

» Although some trend to make the spectra sllghtly harder
for larger o/s. -

e Another interesting test:
What happens if the IC modes are driven by plasma

compression
instead of shearing?









2) lon Acceleration: Testing the process using
compressing box

Case with

« B;=0.5,

e KkT;/m,c?=0.05,

* m/m,=8 and 16

* o./s=1600 and
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Setup of Sironi et al
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2) lon Acceleration: Testing the process using
compressing box

Case with

« B;=0.5,

e KkT;/m,c?=0.05,

e m/m,=8 and 16

* o./s=1600 and
3200
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o Essentially no difference between mi/me=8 and 16.

« Little difference between w;/s=1600 and 3200 (a bit harder when w, ;/s=3200

).

a2 Thaoa armnlificatinky morcrhaniecrm fchanar Ay crAarmnnraccinan AAanecen’t mattrarl



2) lon Acceleration: the effect of kyT/m,c? and T/T; (work in progress)

Previous studies show that the IC instability can dominate even for /"t > 1 if T /T, <<
1 (e.qg., Sironi et al 2015) -> relevant for low-luminosity accretion flows
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2) lon Acceleration: the effect of kyT/m,c? and T/T; (work in progress)

Previous studies show that the IC instability can dominate even for g/" > 1 if T/T, <<

1 (e.qg., Sironi et al 2015) -> relevant for low-luminosity accretion flows

For low enough T_/T, the
dominance of the IC modes
and corresponding

acceleration is “reactivated”.

However, acceleration is
less efficient as kgTi/m.c?
decreases.
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Acceleration by “non-thermal” anisotropic viscosity
(work in progress; in collaboration with Ellen Zweibel and Francisco Ley)

We know thatit/; /dt = Ap;q  (anisotropic viscosity).

However, this energyzation is reversible unless there is pitch-angle scattering that
breaks adiabaticity.
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Acceleration by “non-thermal” anisotropic viscosity
(work in progress; in collaboration with Ellen Zweibel and Francisco Ley)

“Proof of Concept”: m/m_=1, kyT/m.c?=0.1, g/"=10, dB/B=1
(intended to be representative of MRI-type turbulence in sub-relativistic
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Acceleration by “non-thermal” anisotropic viscosity
(work in progress; in collaboration with Ellen Zweibel and Francisco Ley)
“Proof of Concept”: m/m_=1, kyT/m.c?=0.1, g/"=10, dB/B=2
(intended to be representative of MRI-type turbulence in sub-relativistic

When B, grows, Ap;>0 and 6B dominated by
their in-plane components (mirror).

When B, decreases, Ap;<0 and oB

dominated by their out-of-plane components
(firenose).
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e Forions with gj"t>> 1, “non-thermal” anisotropic viscosity (AV) can also accelerate
(preliminary)

» Several Open Questions:
1) What is the long-term outcome of these acceleration processes? Do they
reach an
stationary regime?
i) For IC/whistler-driven acceleration: how does this apply to other regimes? ->
solar flares?
i) Fon non-thermal AV, how does this affect electrons? relativistic pairs?
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