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Motivation:

Low-luminosity accretion disks around black holes: 
Examples: Sgr A* and M87.

What do they have in common:                               τcoll >> τaccr
τcoll: Coulomb collision time and τaccr: Accretion time of the gas

In this weakly collisional plasmas, there is no obvious thermalization
mechanism.
Therefore the evolution of the energy distribution could involve non-thermal 
acceleration.  

Relevant for interpreting:   
High resolution imaging 

Sgr A* a Pevatron? 

EHT 
collaboration

Sgr A* multi-
wavelength
observations. 

(Yuan et al. 2003) 

Power-law tail with spectral 
index

  

Abramowski et al 2016
(HESS observations)

Diffuse emission from inner ~100 pc.
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Numerical method: 
2D and 1D particle-in-cell (PIC) simulations (TRISTAN-MP) in a 

shearing box

Representative of local 
behavior of 

plasma in disks

Pressure anisotropy-
driven kinetic 
instabilities!

Mechanism: Several processes can give to rise non-thermal particles accretion 
disk: 
shocks, magnetic reconnection, stochastic acceleration by cascading MHD 
turbulence.

Question we put forward:   
Can pressure anisotropy-driven kinetic instabilities produce stochastic 

acceleration?
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2016):

As long as               (                        is the ratio between the pressure of particles j
and the magnetic pressure), the electron anisotropy is dominated by the 
whistler instability, with little influence of the ion-cyclotron and mirror instabilities.

=>      As a first approach, we can neglect the ion physics and study the 
physics of the    

whistler instability assuming immobile ions (as if they had infinite 
mass). 
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mass.

Example: case βe
init=2, kBTe/mec2=0.28.

At                  , there is the exponential growth of whistler modes, which subsequently 
saturate.
At the same time, the growth of pressure anisotropy also 
saturates, following the threshold for the whistler instability. 

Electron acceleration (Riquelme et al 2017): 

• After an amplification factor of  ~3 (             ), the electron spectrum contains a 
non-thermal power-law tail of spectral index αs ~ 3.7,   

Close to the αs ~ 3.5 usually inferred from radio observations of the quiescent 
Sgr A* 

(e.g., Yuan et al. 2003)                       



• The quantity             accounts fairly well for the heating of the electrons.

But how does this electron energization work?

• Anisotropic viscosity (“AV”): it is possible to show that: 

where Uj is the internal energy of species j, and “q” is the growth rate of the 
magnetic field.

Electron acceleration: 
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Electron acceleration: 

• The thermal electrons give energy to the whistler waves.

• The non-thermal electrons receive energy from the waves.

Energy gains due to anisotropic viscosity and 
work done by the electric field of the whistler 

modes.

Spectrum evolution: 
case kTe/mec2=0.28; βe=2

Acceleration mechanism
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Electron acceleration:                Dependence on plasma parameters
Dependence on Dependence on 

• The hardness of the tail is similar for                           , and gradually decreases as             
grows.

• On the other hand, the acceleration appears to be fairly independent of

ωc,e: cyclotron frequency of the electrons
s: shear rate of the plasma

• However, for a fixed  value of βe,init the electrons can have different temperatures 
kTe/mec2. 

We are currently studying this dependence

kTe/mec2=0.2
8
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Electron acceleration:                Dependence on plasma parameters

Dependence on kBTe/mec2 -> relativistic electrons regime (work in 
progress):

We see essentially the same dependence on βe
init: 

• Acceleration is most efficient for  βe
init~1, and it 

decreases both for βe
init=0.5 and 4.

• There is an overall decrease in the acceleration 
efficiency in the relativistic regime: 

• Although once the                           regime is reached, 
there is not further decrease in the acceleration 
efficiency as kBTe/mec2 grows.

• Interestingly, if B is amplified by a factor larger than ~3, 
a power-law with index~3.7 is recovered.



Can ions be accelerated as well?
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In the case of ions, under typical conditions, there is not a single electromagnetic mode 
regulating the anisotropy: 

Simulation with
βi=0.5, mi/me=2

Depending on the δB 
component, one can 
see different modes:

Mirror:
oblique modes

Ion-cyclotron (IC):
quasi-parallel mode

• The dominance of the mirror and IC modes is 
important if we are interested in ion 
acceleration. This is because only the IC modes 
have finite phase velocity (mirror modes are 
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• This can be seen by looking at the electric field, 
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2) Ion Acceleration: 

Case: βi
init=0.5, kTi/mic2=0.05, ωci/s=800, mi/me=2

When the IC instability dominates (βi
init=0.5), ions show a “bumpy” power-law tail with 

αs~3.4.






2) Ion Acceleration: spectra in different βi
regimes

• kTi/mic2=0.05
• ωci/s=800
• mi/me=2 and 10

(Ley, MR, et al 
2019)
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2) Ion Acceleration: physics of the 
acceleration

• The electric field of the IC modes transfers energy from 
the thermal to the non-thermal ions, similarly to what 
whistler waves do it with the electrons.

.
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Pushing mi/me and 
ωci/s               

using 1D 
simulations. 

• There is practically no difference between the ion spectra 
for 
different mi/me.

• Also little difference when increasing magnetization

• Although some trend to make the spectra slightly harder 
for larger ωci/s.

• Another interesting test: 

What happens if the IC modes are driven by plasma 
compression           

instead of shearing?
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2) Ion Acceleration: Testing the process using 
compressing box

Setup of Sironi et al 
2015

Case with 
• βi=0.5, 
• kTi/mic2=0.05, 
• mi/me=8 and 16
• ωc,i/s=1600 and 

3200

• Essentially no difference between mi/me=8 and 16.

• Little difference between wc,i/s=1600 and 3200 (a bit harder when wc,i/s=3200 
).

• The amplification mechanism (shear or compression) doesn’t matter!
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2) Ion Acceleration: the effect of kBTi/mic2 and Te/Ti (work in progress)

Previous studies show that the IC instability can dominate even for βi
init > 1 if Te/Ti << 

1 (e.g., Sironi et al 2015) -> relevant for low-luminosity accretion flows

• For low enough Te/Ti the 
dominance of the IC modes 
and corresponding 
acceleration is “reactivated”.

• However, acceleration is 
less efficient as kBTi/mic2

decreases.
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Acceleration by “non-thermal” anisotropic viscosity
(work in progress; in collaboration with Ellen Zweibel and Francisco Ley)

We know that                          (anisotropic viscosity). 

However, this energyzation is reversible unless there is pitch-angle scattering that 
breaks adiabaticity.

But, can this pitch-angle scattering acts differently for particles of different 
energy?

Mirror modes
(increasing magnetic 
field)

Firehose modes
(increasing magnetic 
field)

In both cases, the 
fluctuations occur on length 
scales comparable with ion 
Larmor radius.
(as also obtained by Kunz et 
al 2014)



“Proof of Concept”: mi/me=1, kBTi/mic2=0.1, βi
init=10, δB/B=1

(intended to be representative of MRI-type turbulence in sub-relativistic 
regime)

When Bx grows, ∆pi>0 and δB dominated by 
their in-plane components (mirror).

When Bx decreases, ∆pi<0 and δB 
dominated by their out-of-plane components 
(firehose).

Acceleration by “non-thermal” anisotropic viscosity
(work in progress; in collaboration with Ellen Zweibel and Francisco Ley)






“Proof of Concept”: mi/me=1, kBTi/mic2=0.1, βi
init=10, δB/B=2

(intended to be representative of MRI-type turbulence in sub-relativistic 
regime)

When Bx grows, ∆pi>0 and δB dominated by 
their in-plane components (mirror).

When Bx decreases, ∆pi<0 and δB 
dominated by their out-of-plane components 
(firehose).

Acceleration by “non-thermal” anisotropic viscosity
(work in progress; in collaboration with Ellen Zweibel and Francisco Ley)






Conclusions 
• Scattering by pressure anisotropy-driven instabilities in an amplifying magnetic field can 

give rise to nonthermal energy spectra.



Conclusions 
• Scattering by pressure anisotropy-driven instabilities in an amplifying magnetic field can 

give rise to nonthermal energy spectra.

• Both for ions and electrons and in the                                   regime, the spectra can be 
approximated by 

i) In the case of electrons: a power-law of αs~3.7, 
which is close to what multi-wavelength observations 
suggest for Sgr A* (e.g., Yuan et al. 2003, Ball et al. 2016).

ii) In the case of ions: a power-law of αs ~3.4 + two bumps 
can be produced .



Conclusions 
• Scattering by pressure anisotropy-driven instabilities in an amplifying magnetic field can 

give rise to nonthermal energy spectra.

• Both for ions and electrons and in the                                   regime, the spectra can be 
approximated by 

i) In the case of electrons: a power-law of αs~3.7, 
which is close to what multi-wavelength observations 
suggest for Sgr A* (e.g., Yuan et al. 2003, Ball et al. 2016).

ii) In the case of ions: a power-law of αs ~3.4 + two bumps 
can be produced .

iii) Most efficient where reconnection is not so efficient. 
(Davelaar et al. 2019, from Ball 

et al 2018)



Conclusions 
• Scattering by pressure anisotropy-driven instabilities in an amplifying magnetic field can 

give rise to nonthermal energy spectra.

• Both for ions and electrons and in the                                   regime, the spectra can be 
approximated by 

i) In the case of electrons: a power-law of αs~3.7, 
which is close to what multi-wavelength observations 
suggest for Sgr A* (e.g., Yuan et al. 2003, Ball et al. 2016).

ii) In the case of ions: a power-law of αs ~3.4 + two bumps 
can be produced .

iii) Most efficient where reconnection is not so efficient. 
(Davelaar et al. 2019, from Ball 

et al 2018)



Conclusions 
• Scattering by pressure anisotropy-driven instabilities in an amplifying magnetic field can 

give rise to nonthermal energy spectra.

• Both for ions and electrons and in the                                   regime, the spectra can be 
approximated by 

i) In the case of electrons: a power-law of αs~3.7, 
which is close to what multi-wavelength observations 
suggest for Sgr A* (e.g., Yuan et al. 2003, Ball et al. 2016).

ii) In the case of ions: a power-law of αs ~3.4 + two bumps 
can be produced .

iii) Most efficient where reconnection is not so efficient. 
(Davelaar et al. 2019, from Ball 

et al 2018)

• For ions with βi
init >> 1, “non-thermal” anisotropic viscosity (AV) can also accelerate 

(preliminary)



Conclusions 
• Scattering by pressure anisotropy-driven instabilities in an amplifying magnetic field can 
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• Both for ions and electrons and in the                                   regime, the spectra can be 
approximated by 

i) In the case of electrons: a power-law of αs~3.7, 
which is close to what multi-wavelength observations 
suggest for Sgr A* (e.g., Yuan et al. 2003, Ball et al. 2016).

ii) In the case of ions: a power-law of αs ~3.4 + two bumps 
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