Launching Galactic Outflows from the ISM with Cosmic Rays

C0.3 C0.5 C0.9 C0.7 C0.0

Christine Simpson EFI McCormick Fellow University of Chicago

KITP Astrophysical Plasmas Workshop Aug. 27, 2019

Outline

- Galactic winds an important aspect of galaxy formation
- 2. Cosmic Rays an energy reservoir in the Galaxy with interesting transport properties
- 3. Simulations of Cosmic Rays in the ISM & galaxies
- 4. Some thoughts and future directions

Abundance matching gives the expected halo mass – stellar mass relation in ΛCDM

MODULATION OF GLOBAL STAR FORMATION EFFICIENCY AS A FUNCTION OF HALO MASS

Evidence for Outflows

Heckman & Borthakur 2016

Dynamics of warm gas in local starbursts

Shull et al. 2014

Metal pollution of the IGM over cosmic time

How does stellar feedback couple between scales?

Galactic scale winds 10s kpc

IGM Groups Clusters Mpcs

Processes:

Thermal Heating
Momentum from clustered SN
Radiation (ionization & pressure)
Cosmic Rays

Simulations of CRs on galactic scales

 Salem & Bryan 2014 - first 3D simulation of CR transport in full galaxy simulation with hydrodynamics

$$\partial_t \epsilon_{CR} + \nabla \cdot (\epsilon_{CR} \boldsymbol{u}) = -P_{CR}(\nabla \cdot \boldsymbol{u}) + \nabla \cdot (\kappa_{CR} \nabla \epsilon_{CR}) + \Gamma_{CR}$$

- Model CRs as a second fluid
- 5+ coding groups now working on this problem in galaxy formation
- All model diffusion, some also model streaming

Cosmic Rays in AREPO

Pfrommer, Pakmor, Schaal, Simpson & Springel 2017 Pakmor, Pfrommer, Simpson, Kannan & Springel 2016

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \nabla \cdot \left[\varepsilon_{\rm cr} (\boldsymbol{v} + \boldsymbol{v}_{\rm st}) - \kappa_{\varepsilon} \boldsymbol{b} \left(\boldsymbol{b} \cdot \nabla \varepsilon_{\rm cr} \right) \right] = -P_{\rm cr} \nabla \cdot (\boldsymbol{v} + \boldsymbol{v}_{\rm st}) + \Lambda_{\rm cr} + \Gamma_{\rm cr}$$

anisotropic diffusion

- CRs are modeled as a 2nd fluid
- They impact the dynamics of the thermal gas through their pressure
- We assume the CRs are imperfectly coupled to the thermal gas - this gives an 'advection' term and a 'diffusion' term, controlled by the diffusivity kappa
- Diffusion is anisotropic -> goes along magnetic field lines
- Include Coulomb and Hadronic losses > a fraction of CR energy thermalizes in dense gas

Pakmor et al. 2016

Jacob et al. 2018

The moving-mesh hydrodynamics with AREPO

PRINCIPAL ADVANTAGES

- Low numerical viscosity, very low advection errors
- Full adaptivity and manifest Galilean invariance
- Makes larger timesteps possible in supersonic flows
- Crucial accuracy improvement over SPH technique

Riemann solver (in frame of cell face)

Springel (2010)

Stratified-box simulations of SN feedback in the ISM

Simpson et al. (2016)

- MHD Simulations (1kpc x 1kpc x 10kpc)
- Model stratified box in initial isothermal equilibrium (10⁴ K), MW-like conditions
 - MHD, self-gravity, uniform ISRF
- Employ atomic & molecular cooling network (Glover et al.) & TreeCol self-shielding (Clark et al.)
- $m_{cell} = 10 M_{\odot}$, $dx_{min} = 1 pc$
- Individual SNe are placed in ISM (10⁵¹ erg)
- CR models put 10% of SN energy in CRs; include Coulomb & Hadronic losses
- Test CR diffusion & advection models (Pfrommer et al. 2017, Pakmor et al. 2016)

Cosmic Ray Diffusion can drive outflows

(Simpson et al. 2016)

Probability of SNe:

$$p_i = sfr_i \times \frac{1.8 \text{ SNe}}{100 \text{ M}_{\odot}} \times \frac{\Delta t}{m_i}$$
$$sfr_i = \epsilon \frac{m_i}{t_{ff,i}}$$

Pressure vs. Height

Projections of Gas Density

Diffusivity - Wind Relation

Simpson et al. in prep

Quantities averaged over final 10 Myr

Energy equation:

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \nabla \cdot \left[\varepsilon_{\rm cr} (\boldsymbol{v} + \boldsymbol{v}_{\rm st}) - \kappa_{\varepsilon} \boldsymbol{b} \left(\boldsymbol{b} \cdot \nabla \varepsilon_{\rm cr} \right) \right] = -P_{\rm cr} \nabla \cdot (\boldsymbol{v} + \boldsymbol{v}_{\rm st}) + \Lambda_{\rm cr} + \Gamma_{\rm cr}$$

anisotropic diffusion: fiducial kappa: 10²⁸ cm² s⁻¹

- Varying diffusivity kappa adjusts outflow speed but not mass loading
- Slowing the diffusion (low kappa) puffs up the disk
- In reality, kappa likely varies within the galaxy future work

Diffusivity - Wind Relation

after 100 Myr

Placement of SN events

$$\operatorname{sfr}_{i}^{\operatorname{mix}} = \operatorname{sfr}_{i}^{\operatorname{ff}} \times \frac{SFR_{\operatorname{KS}}}{\sum \operatorname{sfr}_{i}^{\operatorname{ff}}} \times (1 - f_{\operatorname{rand}})$$

Random Fraction

Hydro only

Anisotropic CR Diffusion

Simpson

ISM against

Wind Properties

CRs drive smooth & slow outflows

CR diffusion models

Simpson in prep

If CR pressure

Magnetic Fields

- Start with a field oriented in the horizontal direction
- After 100 Myr, see a randomly oriented field in the midplane
- Some vertical ordering above a certain height
 - This seems to vary with placement model more analysis needed!

Blue: z

Red, green: x,y

Full disk models: outflow dependence on halo mass

Jacob, RP, Simpson, VS & CP (2018)

- Subgrid treatment for star formation & ISM
- Replaced previous wind model with CR diffusion
- All halos with log(M/Msun) between 10 and 12 produce outflows

Gamma Ray Flux Predictions

Pfrommer, RP, Simpson & VS (2017)

Gamma Ray Flux Predictions

Preliminary results:

- Models with more mass in dense phase drop below the relation due perhaps to Coulomb & Hadronic loss model
- Also a trend with kappa low kappa places you above the relation

Squares - Constant kappa, varying SN placement

Circles - Constant SN placement, varying kappa

Shock Injection

- Previous models have injected CRs by hand with thermal SN energy
- Alternatively, we can inject CRs at sites of shocks

$$\Delta E_{\rm cr} = \zeta(\mathcal{M}_1, \theta) E_{\rm diss}$$

Pfrommer, Pakmor, Schaal, Simpson & Springel 2016

Shock injection comparison...

Conclusions

- Galactic Winds are an important phenomena and a necessary ingredient in galaxy formation
- CR pressure gradients can drive outflows and CR pressure impacts the fragmentation of the ISM - this should be physics we include in a complete galaxy model
- Simulations of CR transport show CR diffusion (and possibly streaming) is the effect that produce flows on galactic scales
- More work is needed in different environments and combined with other physical effects to make progress