

Diffusive Particle Acceleration in Relativistic Shocks

Matthew G. Baring
Rice University
baring@rice.edu

Former Thesis Student: Errol J. Summerlin

Gamma-Ray Bursts: Relativistic Outflows

Fermi GRB 080916c

Temporal and Spectral Evolution

Science (2009): Abdo et al.

High Energy Cosmic Ray Accelerators: Radio Galaxies like Cygnus A

Multi-wavelength Low-state SED: Fermi-LAT Blazar PKS 2155-304

z=0.116 Abdo et al. (2009)

HBLs vs. FSRQs

Shock Acceleration: Monte Carlo Simulations

- The Monte Carlo simulations use a kinetic description of convection and diffusion in MHD shocks;
- Thermal ions and e⁻ are injected far upstream of shock;
- Particle diffusion in MHD turbulence is phenomenologically described via the mean free path λ being some power of its gyroradius \mathbf{r}_g : same prescription for both thermal and nonthermal particles, and for electrons and protons;
- Principal advantages include addressing large momentum ranges => excellent for astrophysical problems.
- Simulations are fully relativistic, and not restricted to subluminal shocks, and include shock drift acceleration;
- Technique has been well-tested in heliospheric contexts of acceleration at the Earth's bow shock (Ellison et al. 1990) and interplanetary shocks (Baring et al. 1997; Summerlin & Baring 2006) using *in-situ* spacecraft data.

Scattering Geometry

$\overline{ m Shock}$ Layer Particle Trajectories - high $M_{ m S}$

Gyrational concentration of particles in x-direction yields obvious density enhancements and cusp structure. Co-ordinates y and z are parallel to shock plane.

Monte Carlo Simulation Particle Trajectories

- Gyration in B-fields and diffusive transport modeled by a Monte Carlo technique; color-coded in Figure according to fluid frame energy.
- Shock crossings produce net energy gains (evident in the increase of gyroradii) according to principle of first-order Fermi mechanism.

- For small angle scattering, ultra-relativistic, parallel shocks have a power-law index of 2.23 (Kirk et al. 2000);
- Result obtained from solution of diffusion/convection equation and also Monte Carlo simulations (Bednarz & Ostrowski 1996; Baring 1999; Ellison & Double 2004);
- Power-law index is not universal: scattering angles larger than Lorentz cone flatten distribution;
- Large angle scattering yields kinematic spectral structure;
- In *superluminal* shocks, spectral index is generally a strongly *increasing* function of field obliquity angle Θ_{Bn1} .

Oblique Shock Geometry

Spectral Dependence on Field Obliquity

Superluminal cases ->

Increasing upstream B-field obliquity and/or ratio of mean free path to gyroradius steepens the continuum (e.g. Bednarz & Ostrowski 1998; Ellison & Double 2004; Summerlin & Baring 2008 [in prep]; Kirk & Heavens 1989).

Relativistic Shocks: Spectral Dependence on Field Obliquity and Diffusion

Ellison & Double (2004)

Superluminal cases for oblique shocks

□ Increasing upstream B-field obliquity and/or ratio of mean free path to gyroradius steepens the continuum (e.g. Bednarz & Ostrowski 1998; Ellison & Double 2004; Summerlin & Baring 2009 [in prep]; Kirk & Heavens 1989).

Shock Acceleration Injection Efficiencies

- Complete particle spectra in the limit of small angle scattering (SAS: pitch angle diffusion: PAD) range considerably;
- In cases of strong cross field diffusion, the index is around two and the injection is efficient;
- Gyro-orbit simulations for λ/r_g→∞ that give flat power-law indices are poor injectors this becomes far more extreme as HT frame speed approaches c.

Baring & Summerlin 2009, in prep.

Shock Acceleration Spectral Indices

- Power-law indices in the limit of small angle scattering (pitch angle diffusion: PAD) range considerably;
- In cases of absolutely no cross field diffusion, the index is as low as unity and the distribution is extremely flat;
- Gyro-orbit simulations for λ/r_g→∞ do not quite match Kirk & Heavens (1989, KH89) solutions to diffusion-convection equation, since KH89 assumes conservation of adiabatic moment for particles interacting with the shock.

Baring & Summerlin 2009, in prep.

Shock Drift in Action: $\lambda/r_g=10^4$

- Left Panel: projection of a selected ion orbit onto the x-y plane, exhibiting drifting in the shock layer. Right Panel: evolution of magnitudes of momentum in fluid (p_F) and shock (p_S) frames versus y, indicating shock drift episodes interspersed with upstream diffusive hiatuses in energy gain;
- Lowering λ/r_g rapidly degrades the contribution of shock drift, enables particle convection downstream, and steepens spectrum.

Shock Drift in Oblique, Non-Relativistic Systems

Fig. 6.—Sample for quasi-perpendicular shock $\theta_1 = 60^\circ$. See Fig. 5 caption and text for details.

$$\mathbf{p}.\frac{d\mathbf{p}}{dt} = q\mathbf{p}.\left\{\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right\} \equiv q\mathbf{p}.\mathbf{E}$$

Connecting to Source Gamma-ray Observations

- GRBs: coupling between particle acceleration index σ for dn/dp α p^{- σ} and observed photon index β (dn_{γ}/d ϵ _{γ} α ϵ _{γ}- β) depends on whether in situ cooling is efficient or not.
 - Uncooled synchrotron or IC: $\beta = (\sigma + 1)/2 \Rightarrow \sigma = 2\beta 1$
 - Strongly-cooled synchrotron or IC: $\beta = (\sigma + 2)/2 \Rightarrow \sigma = 2\beta 2$
- Uncooled hadronic emission: β~σ
- Blazars: uncooled synchrotron self-Compton (SSC) is generally invoked to explain gamma-rays:
 - Uncooled SSC: $\beta = (\sigma+1)/2 \Rightarrow \sigma=2\beta-1$
- Hadronic scenarios: β~σ
- => Great diagnostics potential in *Fermi* era!

Shock Acceleration Spectral Indices

- Power-law indices in the limit of small angle scattering range considerably;
- GRBs and blazars generally require σ>1.5;
- Cooled GRB scenarios and blazars require either strong turbulence, or subluminal shocks;
- GRB emission is uncooled synchrotron/IC, then superluminal shock regime is preferred.

Baring & Summerlin (2009)

Conclusions

- Shock acceleration particle indices depend on several parameters: field obliquity, the scattering strength or level of MHD turbulence, amount of diffusion across B;
 - => there is no canonical spectral index.
- So, GRB and blazar spectra are intimately connected to detailed shock parameters => Fermi role for gamma-ray spectral diagnostics for hadronic and leptonic models.
- Index parameter space dichomatizes into sub-luminal (flat) and super-luminal (steep) regimes.
- Extremely flat spectra realized in sub-luminal shocks with minimal cross field diffusion: retention of particles in shock layer permits action of shock drift acceleration.
 - Unlikely to be realized in Nature: shock environs are turbulent; injection is inefficient, and spectra not commensurate with source photon signals (σ>1.5).