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Collisionless Plasma Shocks

* |In a rarefied hot cosmic plasmas the
Coulomb collisions are not sufficient to
provide the viscous dissipation of the
incoming flow, and collective effects due to
the plasma flow instabilities play a major
role, providing the collisionless shocks, as
It was first directly observed in the
heliosphere In 60s.



Collisionless Plasma Shocks

 The thickness of collisionless shocks Is
usually by many orders of magnitude less

than the Coulomb mean free path.

Strong Magnetic field fluctuations
observed in the shock ramp indicated that
plasma instabllities are responsible for the
supersonic flow relaxation
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Figure 2. These shocks formed under similar solar wind
conditions, but there is great disparity between their ramp widths.
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Collisionless Plasma Shock
Simulations

e Particle-in-Cell Code simulations
 Hybrid Code Simulations

These are the most powerful tools to study
the collisionless shock structure

on the scales of about a few thousands of
proton gyro-radii
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Fig. 2 Hybrid simulated magnetic fields of a quasi-perpendicular shock (80° inclination). The
shock propagates along the x-axis, while the initial regular magnetic field is in the z—= plane.
We show the B, and B, dependence on x in the left and right panels respectively.
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Fig. 1 Ovi phase density in a hybrid simulated quasi-perpendicular shock (80° inclination).
The shock is moving from left to right in the reference frame where the particle reflecting wall
is at rest. The figures show the oxygen phase densities in x — vp, * — vy and r — v, projections
from top to bottom respectively. The size of the simulation box in x-dimension is about 300
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Fig. 2 Hybrid simulated Ovir distribution function (normalised) as a function of a random
velocity component dvy = vy— < vy > transverse to the downstream magnetic field in a
quasi-perpendicular shock (80° inclination). The shock propagates along the x-axis, while the
initial regular magnetic field is in the x—= plane. In the left panel the distribution in the viscous
velocity jump is shown. The right panel shows the distribution behind the jump at the position
of the left end in Fig. 1. Multi-velocity structure of the flow is clearly seen in the left panel,
while it is relaxing to quasi-Maxwellian in the right panel.
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Diffusive Shock Acceleration

* In the course of the violent collisionless

shock relaxation process some amount of
particles may form a super-thermal
population to be further accelerated to
nighly relativistic energies in extended
cosmic shocks. Diffusive Shock
Acceleration is the most popular scenario
to do the job...




Diffusive Shock Acceleration

 the Diffusive Shock Acceleration to be
efficient requires strong magnetic field
fluctuations of scales many (more than 5)
orders of magnitude larger than the ion
Inertial (and the shock width) ... It can not
yet be modeled in details by PIC or hybrid
simulations



How computationally expensive
the direct plasma simulations are?
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for the number of cells in one dimension. The factor f = m,/m. is the proton to electron mass ratio. From the
acceleration time condition, the required number of time steps is,

Tacel Pmax ) E u 2B\, n 1/2 I 1/2
N _ acc( max) G 1014 rnax 0 = . A2
t Whe' . TeV 1000 km s~ uG ( cm 3 ) 1836 (42)

Even with f = 1 these numbers are obviously far beyond any conceivable computing capabilities and they show that
approximate methods are essential for studying NL-DSA.




Diffusive Shock Acceleration

 DSA in Non-relativistic shocks can not yet
be modeled In full details by PIC or hybrid
simulations...
though there are nice PIC simulations of

relativistic shocks by J.Arons, A.Spitkovsky and
co-workers



Models of DSA

What can we do now?

« Kinetic models e.g. Axford ea (1977), Krimskil
(1977, 1981), Bell (1978, 1987), Blandford and
Ostriker (1978), Eichler (1979), Toptygin and co-
workers, Drury and Volk, Berezhko and Volk,
Blasi and co-workers, Ptuskin and Zirakashuvili
and many, many others...

e Or just a non-linear gambling --- D.Ellison,
F.Jones, M.Baring, and co-workers



Monte Carlo Model of DSA with Magnetic
Turbulence Amplification In

Non-relativistic Shocks

Work done with D.C.Ellison and A.E.Vladimirov



MC model of DSA

e Particle scattering rate or MFP prescription
(difftusion model)

 Magnetic Turbulence Model:
(1) Turbulence amplification and dissipation
(i) Turbulence spectral transfer



Magnetic field amplification models:
Resonant models of wave generation

e.g. Wentzel (1969), Kulsrud & Cesarsky (1971), Skilling
(1975), Achterberg (1981) and many others

Non-resonant models e.g. by Drury and Dorfi (1985) (long-
wavelength CR pressure gradient instability), Bell
(2004), Pelletier ea (2006) (a fast short-wavelength
CR current instability). L —wavelength CR current
Instabilities by Bykov, Osipov, Toptygin (2005, 2009),
Pelletier ea (2006), Reville et al (2007). L-wavelength

iInstability by Malkov and Diamond and others



MC model of DSA

Two models of the turbulence spectral
energy transfer

() Kolmogorov-type cascade
(i) No-cascade Iin the mean-field direction

We used Bell’s short wavelength
iInstablility as the magnetic field
amplification mechanism



a fully nonlinear model of DSA based on Monte
Carlo particle transport

-Magnetic turbulence, bulk flow, super-thermal
particles derived consistently with each other

Amplified

MHD turbule
ux)

particles

f(x,p)

Vladimirov, Ellison & Bykov, 2006. Ap]J, v. 652, p.1246;
Vladimirov, Bykov & Ellison, 2008. ApJ, v. 688, p. 1084

Viadimirov.  Bvkov & Ellison 2009 ApnJ v. 703 | 29



The Structure of Supersonic Flow

lllllllllllll
1T TN Solid: No Cascaling "
L F R Dotted: Cascadin 1
N _
3 0.5 [
= _
0, £
‘o 10 3
3 10
107
s O — HHHHHHHHHHH
zo —2 | . Solid: No Cascading 4 -
) i ' Dotted: Cascading 4 i
\ _4 n '
/N [
> A
= —6 |
o A
g 8r
Y 8 r
o e
I—
o 6
> A
L2 4




10°
10°
10*
1000
100
10

kW(x,k)/(By2/8)

0.1
0.01

) I ) I ) I ) I ) I )
Solid: No Cascading
Dotted: Cascading (

W o k—5/ 3




. Solid: No Cascading
Dotted: Cascading

-2 o) 2 4
logyg P [mpC]



MC model of DSA

How the turbulence dissipation may
change the flow and particle spectra?



u(x), cm/s

Begr(x), G

T(x), K

Self-Consistent Simulations

Here shock structure and injection are determined self-
consistently (momentum and energy are conserved).
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Optical and UV absorption and
emission spectra and the line shapes
are the natural tools to constrain the
magnetic field dissipation in the shock
upstream

What about synchrotron?



Efficient DSA requires strong magnetic
turbulence with stochastic m-field amplitude
above the regular m-field in the shock

upstream

How that stochastic field affects the X-ray
synchrotron emission?

Work done with D.C.Ellison and Yu.A.Uvarov

Bykov, Uvarov & Ellison, 2008. ApJ, v. 689, L133



Synchrotron Radiation:

Ginzburg and Syrovatskii 1969



Synchrotron Radiation formation length:

R 2
| =2 =M 18x10° B, . *[cm]
y eB g

Field fluctuations of scales larger than I, can be treated
as a locally homogeneous field



Synchrotron Radiation:

Cn = 'vz‘;m;r si;' 0 {L(8 + ¢ Kars(gn) + il (8 + ¥2) 12K 115(gn) }
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Ginzburg Syrovatskii 1969



Synchrotron Radiation Stockes Parameters:

From this and from expressions 2.18, 2.22 we can find the spectral density
of the radiation flux for the two main directions of polarization

. . 3wy v ) ’( ?}'2) : -
(1) = - — ) (14 —) K52z, 2.2
2 @) Irtrce sint 6 \p. - g ) Ko (g») S

_ _ 3etwn p \2y2 Y2
PO mda0) = e (2) 5 (14 5) Kurte) 2.26

Ginzburg and Syrovatskii 1969



Synchrotron Radiation Stockes Parameters:

[ Fet) N [ P+ \
§ B H(r, t, 1) B ( ,El} — pf}) -cos 2y
N T(r.t,v) | (pi,lj —pfj) - 8in 2y

\ /(r,t,v) / \ ( o —pf}} tan 203 )



F1G. 5. Oscillation ellipse of the electric vector in a wave radiated by particles
moving in a magnetic field, where the charge is taken as a positive. For negatively
charged particles (electrons) the direction of rotation is opposite to that shown. The
plane X is the plane of the figure (the plane perpendicular to the direction of the radia-
tion or, equivalently, to the direction of the observer), and {; and I; are two mutually
orthogonal unit vectors in the plane of the figure, of which 1, is directed along the
projection of the magnetic field H on the plane K.



Local Synchrotron Emissivity for a power-law electron distribution:

) N, (Bsin 7)o

N(y)=N,-y°

Note the strong dependence of the emissivity 1 on B
in the spectral cut-off regime !



Because of the strong dependence of the emissivity | on B in the cut-

off spectral regime a strong local magnetic field enchancement could
even dominate integral over the line of sight...

High statistical moments of the magnetic field distribution are
Important... intermittency



Synchrotron Radiation Stockes Parameters:

L

S(Ry.t,v)= ] dl dy N(r,~,t) S:‘(r, t'vy), tt=t—|r—Ry|/e



. Electron Distribution Simulated with
Kinetic Model
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* A model of stochastic magnetic field

We just simulated random magnetic fields with
given fluctuation spectra in four decade wave-
number band



Random magnetic field generation prescription:

BUE 2008




- Synchrotron Emission Images and
Spectra



Synchrotron Emission Images

BUE 2008



Synchrotron Emission Images (Zoom)
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Light Curves for Clump D1

BUE 2008



Synchrotron Emission Spectra
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The account for magnetic field magnitude fluctuations (not just the
random field directions, as it was done before) result in a very strong
enchancement of synchrotron surface brightness in the cut-off
spectral regime.

The effect should be accounted for in the models that are making the
turbulent magnetic fields estimations using the roll-off frequency...



Time variability of simulated synchrotron
X-ray image at S5keV

Bykov Uvarov Ellison 2008



Simulated synchrotron X-ray image
@ 50 keV

Bykov Uvarov Ellison 2008



* Variablility time scale is below a year



Synchrotron Images for different
turbulence spectra




Chandra imag of RXJ1713 NW




« RXJ1713.7-3946
Uchiyama et al. 2007

2005 2006

10 arcsec

2006

E arcsec

Nonthermal clump “lifetime” ~ lyr !!



RX J1713.73946

Uchiyama et al. 2007, Nature, 449, 576
temch = 1.5 (B/mG) ™ *° (e/keV) *° years
Synch. cooling time ~ 1yr result in high ~ mG regime magnetic field??

Extremely fast acceleration of cosmic rays in a
supernova remnant 7>



« RXJ1713.7-3946
Uchiyama et al. 2007

nature Vol 449 |4 October 2007|doi:10.1038/ nature06210

LETTERS

Extremely fast acceleration of cosmic rays in a
supernova remnant

Yasunobu Uchiyama’, Felix A. Aharonian®’, Takaaki Tanaka'*, Tadayuki Takahashi' & Yoshitomo Maeda'



SN 1006 Suzaku

The roll-off energy, viq. 1s described as

B E 2
on=16x10"° —— || ——— ] . 1
Vroll = 1.5 (mga)(mm) (1)

where E. and B represent the maximum energy of acceler-
ated electrons and the magnetic field strength, respectively
(Reynolds 1998:; Reynolds & Keohane 1999). The maximum
energy of electrons i1s estimated to be 9.4 TeV, under the
assumption that the downstream magnetic field strength 1s
40 1 G. The time scale of the synchrotron loss, 1),... 15

Bamba e.a. 2008



RX J1713.73946

Uchiyama et al. 2007, Nature, 449, 576
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Figure 3 | Energy spectrum of X-ray emission of SNR RX J1713.7—3946.
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Cas A

Likely Synchrotron X-ray structures that are seen in Cas A:
filaments (Vink & Laming (2003)

clumps and dots (Uchiyama & Aharonian (2008), Patnaude &
Fesen (2008, 2009) could be relevant to DSA and the
turbulent magnetic field amplification processes
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