

Damiano Caprioli

Group: Pasquale Blasi, Elena Amato Giovanni Morlino, Rino Bandiera

INAF - Osservatorio. Astrofisico di Arcetri, Firenze

The SNR paradigm for galactic CRs

- SNe may account for galactic CR energetics
- Diffusive Shock Acceleration provides power law spectra with the *correct* index

BUT

- Are CRs passive spectators of the shock dynamics?
- What is the maximum energy SNRs can accelerate CRs at?
- How do particles escape from SNRs?

Need for a Non-Linear theory of DSA

Kinetic approaches to NLDSA

Semianalytic Flexible, computationally extremely cheap

Monte Carlo

 Relativistic shocks

Fully Numeri cal

Time dependent solution

All methods require an a priori description of:

- Particle transport
- Magnetic field amplification
- Injection
- Particle escape

A semi-analytic approach

- Solution of the stationary diffusion-convection equation (Amato & Blasi 05-06)
 - Injection via thermal leakage (Malkow 1998, Kang et al. 2002, Blasi et al. 2005)

$$egin{align} urac{\partial f}{\partial x} &= rac{\partial}{\partial x}\left[Drac{\partial f}{\partial x}
ight] + rac{1}{3}rac{du}{dx}prac{\partial f}{\partial p} + Q(x,p) \ Q(x,p) &= \etarac{n_1u_1}{4\pi p_{inj}^2}\delta(p-p_{inj})\delta(x) \ \end{pmatrix}$$

Transport eq. + injection recipe

CR Distribution function

$$\xi_c(x) = 1 + rac{1}{\gamma_g M_0^2} - U(x) - rac{1}{\gamma_g M_0^2} U(x)^{-\gamma_g}$$

Momentum conservation eq.

$$\xi_c(x) = 1 + \frac{1}{\gamma_g M_0^2} - U(x) - \frac{1}{\gamma_g M_0^2} U(x)^{-\gamma_g} \qquad \qquad \xi(x) = \frac{1}{3\rho_0 u_0^2} \int_{p_{inj}}^{p_{max}} \mathrm{d}p \ 4\pi \ p^3 v(p) f(x,p)$$

CR pressure

- Very fast iterative method based on integral equation solution
- Allows arbitrary diffusion coefficient D(x,p)
- May be easily generalized in order to account for oblique shocks, perpendicular transport, Fermi II, nuclei acceleration,...

The maximum momentum

- Following Drury 1983, we calculated the acceleration time from the timedependent transport equation (Blasi, Amato & DC 2007)
 - For modified shocks and arbitrary D(x,p)

$$\langle t \rangle = \frac{3R_{\text{tot}}}{u_0^2} \int_{p_{\text{inj}}}^{p} \frac{\mathrm{d}p'}{p'} \left[\frac{R_{\text{tot}}D_2(p')}{R_{\text{tot}}U_p(p') - 1} + \frac{u_0\Lambda(p')}{R_{\text{tot}}U_p(p') - 1} \right] \qquad \Lambda(p) = \int_{-\infty}^{0} \mathrm{d}x \exp\left[\frac{q(p)}{3} \left(1 - \frac{u_2}{u_1} \right) \int_{0}^{x} \mathrm{d}x' \frac{u(x')}{D(x')} \right]$$

$$\Lambda(p) = \int_{-\infty}^{0} dx \exp\left[\frac{q(p)}{3} \left(1 - \frac{u_2}{u_1}\right) \int_{0}^{x} dx' \frac{u(x')}{D(x')}\right]$$

- Shock modification lead to:
 - P_{max} decrease due to fluid slowing down
 - P_{max} increase due to MFA

P_{max} as high as the knee within ~ 1000 yr

Also confirmed by Monte Carlo calculation by Ellison & Vladimirov 2008

Magnetic Field Amplification

The width of the rims requires $B_{ds} \approx 70-500 \ \mu G >> B_0$

SNR	B _{ds} (μG)	P _{w,ds} (%)
Cas A	250-390	3.2-3.6
Kepler	210-340	2.3-2.5
Tycho	240-530	1.8-3.1
SN1006	90-110	4.0-4.2
RCW 86	75-145	1.5-3.8

Völk, Berezhko & Ksenofontov 2005 Parizot et al. 2006

Downstream magnetic pressure
Is at most 2 - 4% of bulk pressure

But upstream P_w very likely dominates over P_{gas} , since:

$$\frac{B^2}{8\pi} > nkT \Rightarrow B > 6\mu G \text{ n}^{1/2} \left(\frac{T}{10^4 K}\right)$$

RCW 86

Shock dynamics with magnetic waves

- Three-fluid approach: gas, relativistic particles, magnetic turbulence
 - Vainio & Schlickeiser 1999

$$\begin{aligned} & \left[\rho u \right]_{1}^{2} = 0 , \\ & \left[\rho u^{2} + p + p_{w} \right]_{1}^{2} = 0 , \\ & \left[\frac{1}{2} \rho u^{3} + \frac{\gamma}{\gamma - 1} u p + F_{w} \right]_{1}^{2} = 0 \end{aligned}$$

$$\frac{p_2}{p_1} = \frac{(\gamma+1)R_{sub} - (\gamma-1) + (\gamma-1)(R_{sub} - 1)\Delta}{\gamma + 1 - (\gamma-1)R_{sub}} , \quad \frac{T_2}{T_1} = \frac{p_2}{p_1} \frac{1}{R_{sub}}$$

$$\frac{T_2}{T_1} = \frac{p_2}{p_1} \frac{1}{R_{sub}}$$

$$\Delta = \frac{R_{sub} + 1}{R_{sub} - 1} \frac{[p_w]_1^2}{p_1} - \frac{2R_{sub}}{R_{sub} - 1} \frac{[F_w]_1^2}{p_1 u_1}$$

For Alfvèn waves:

$$F_w = \sum_{\mu} rac{\delta ec{B}_{\mu}^2}{4\pi} \left(u + H_{c,\mu} v_A
ight) + rac{\left(\sum_{\mu} \delta ec{B}_{\mu}
ight)^2}{8\pi} u \,, \qquad p_w = rac{1}{8\pi} \left(\sum_{\mu} \delta ec{B}_{\mu}
ight)^2 \qquad \qquad \delta ec{u}_{\mu} = - H_{c,\mu} rac{\delta ec{B}_{\mu}}{\sqrt{4\pi
ho}} \,.$$

$$p_w = rac{1}{8\pi} \left(\sum_{\mu} \delta ec{B}_{\mu}
ight)^2$$

$$\delta \vec{u}_{\mu} = -H_{c,\mu} \frac{\delta \vec{B}_{\mu}}{\sqrt{4\pi\rho}}$$

At the subshock waves are partially reflected and transmitted in order to satisfy Maxwell and conservation equations (Scholer & Belcher 1971)

$$\mathcal{T} \simeq rac{R_{sub} + \sqrt{R_{sub}}}{2}$$

$$\mathcal{R}_{c}\simeq rac{R_{sub}-\sqrt{R_{sub}}}{2}$$

$$p_{w2} = p_{w1} R_{sub}^2$$

$$T\simeq rac{R_{sub}+\sqrt{R_{sub}}}{2}$$
 $R_{sub}\simeq rac{R_{sub}-\sqrt{R_{sub}}}{2}$ $R_{sub}\simeq rac{R_{sub}-\sqrt{R_{sub}}}{2}$ $\Delta=(R_{sub}-1)^2rac{p_{w1}}{p_1}$

If one naively assumed $F_w = 3u P_w$ everywhere, then

$$\Delta' = [(R_{sub} - 1)^2 - 2R_{sub}]W < \Delta$$

$$W = p_{w1} / p_1$$

thus Δ '<0 for R_{sub}< ~ 3.7 and opposite effect on the temperature jump!

The dynamical feedback of MFA

Three-fluid model with Alfvén waves excited by streaming instability

$$R_{tot}^{\gamma+1} = \frac{M_0^2 R_{sub}^{\gamma}}{2} \left[\frac{\gamma + 1 - R_{sub}(\gamma - 1)}{1 + \Lambda_B} \right]$$

$$\Lambda_B = W \left[1 + R_{sub} \left(2/\gamma - 1 \right) \right]$$

$$W = P_w / P_{gas}$$

Ratio between magnetic and plasma pressure upstream

• Ir
$$W = P_{w1}/P_1$$
 / \approx 1-100

DC, P. Blasi, E. Amato & M. Vietri 2008, ApJL

The magnetic turbulence feedback cannot be neglected and provides a smoothening of the precursor

MFA and damping in equations

We start from the equation for magnetic turbulence transport

$$\frac{\partial \mathcal{F}_w(k,x)}{\partial x} = u(x) \frac{\partial \mathcal{P}_w(k,x)}{\partial x} + \sigma(k,x) \mathcal{P}_w(k,x) - \Gamma(k,x) \mathcal{P}_w(k,x)$$

with resonant growth
$$\sigma(k,x) = \frac{4\pi}{3} \frac{v_A(x)}{\mathcal{P}_w(k,x)} \left[p^4 v(p) \frac{\partial f(x,p)}{\partial x} \right]_{p=\bar{p}(k)}$$

- and damping $\Gamma(x) = \zeta \sigma(x)$

By integrating over
$$k$$
 one gets
$$\frac{dF_W(x)}{dx} = u(x)\frac{dp_W(x)}{dx} + (1 - \zeta)v_A(x)\frac{dp_{CR}(x)}{dx}$$

and in the limit
$$M_A >> 1$$
, $M_0^2 >> 1$
$$\frac{p_W(x)}{\rho_0 u_0^2} \approx (1 - \zeta) \frac{1 - U(x)^2}{4 M_A(x) U(x)} \qquad U(x) = \frac{u(x)}{u_0}$$

Usual implementations of the turbulent heating assume $\zeta/1$ ←Mc Kenzie Völk 1981← which is however incosistent with $MFA\omega$

The heating of the plasma is given by $\frac{d}{dx} \left[p(x)u(x)^{\gamma} \right] = \zeta(\gamma - 1)v_A(x)u(x)^{\gamma - 1} \frac{dp_{CR}(x)}{dx}$ and has been easily implemented in the formalism above (DC et al. 2009)

Magnetic feedback on the spectra

$T_0(K)$	Λ_B	ξ_1	$p_{max}(10^6 GeV)$	R_{sub}	$R_{tot} T_2(10^6 \mathrm{K})$
$\frac{10^4}{10^4}$	No Yes	0.97 0.58	$0.24 \\ 1.17$	$3.58 \\ 3.84$	112.1 0.88 9.22 126.5
$\frac{10^{6}}{10^{6}}$	No Yes	$0.77 \\ 0.54$	$0.59 \\ 1.14$	$3.76 \\ 3.84$	16.6 42.3 8.44 154.8

Scattering centre velocity

The velocity of the scattering centers naturally enters the transport equation

$$\tilde{u}(x)\frac{\partial f(x,p)}{\partial x} = \frac{\partial}{\partial x}\left[D(x,p)\frac{\partial}{\partial x}f(x,p)\right] + \frac{d\tilde{u}(x)}{dx}\frac{p}{3}\frac{\partial f(x,p)}{\partial p} + Q(x,p) \qquad \tilde{u}(x) = u(x) - v_{W}$$

$$\tilde{u}(x) = u(x) - v_{W}$$

How does it depend on the nature of the turbulence?

Assuming an effective Alfvén velocity in the amplified B leads to much steeper spectra!

$$v_A(x) = rac{\delta B(x)}{\sqrt{4\pi
ho(x)}}$$

Why semi-analytical?

- The formalism outlined above for stationary, non-relativistic shocks is a very powerful tool since:
 - It is very fast (1 run takes from 10" to 1")
 - It has virtually no dynamical range limitation on P_{max}, M₀, ...
 - Allows to scan wide range of environmental parameters
 - Allows the inclusion of nuclei (work in progress)
 - Can implement new physical insights as soon as they are available

- Applications to SNR shocks:
 - Hydro + Multi-wavelength analysis of single SNRs (see Giovanni's talk)
 - Test the SNR paradigm for the origin of galactic CRs (see this talk)

The escape flux

- Ejecta dominated stage
 - P_{max} and magnetic turbulence increase with time
- Sedov-Taylor stage
 - $V_{\rm sh}$, $P_{\rm max}$ and δB decrease, and the SNR confining power too
 - Particles with momentum close to P_{max} escape the system from upstream
- An escape tern stationary regir

$$F_{esc} = \int_{-\infty}^{0^+} dx \frac{1}{3} \frac{du}{dx} 4\pi p_n^3$$

And the back of

0.8 Momentum $F_{esc} = \int_{-\infty}^{0^+} dx \frac{1}{3} \frac{du}{dx} 4\pi p_n^3$ 0.10 1.00 10.00 $d\mathcal{E}(t) = \mathcal{F}_{esc}(t) \frac{1}{2} \rho V_{sh}^3$ (DC, Blasi & Amato 2009 p/p_{*}

is in the

darv

$$\phi_{esc} = -D \left[rac{\partial f}{\partial x}
ight]_{x=x}$$

$$_{sc}(p) \propto p^{-4}$$

 $d\mathcal{E}(p) = 4\pi p^2 N_e$ Escape spectrum is no way related to E⁻² Fermi's prediction for the acceleration one!

Step by step quasi-stationary SNR evolution

- Main ingredients:
 - Shock evolution according to self-similar solution (Truelove & McKee 1999)
 - Solution of NLDSA problem at each time step
 - Magnetic field amplification and damping (Ptuskin & Zirakashvili 2003/5)
 - Adiabatic losses in the downstream
 - ➤ Particle escape from *upstream*: free escape boundary at x₀=0.15 R_{sh}
 - ► Leakage from downstream if the diffusion length is larger than R_{sh}-R_{cd}

• $T_0=10^5$ K, $n_0=0.1$ cm⁻³, $B_0=5$ μ G, $x_0=0.15$ R_{sh}, Bohm diffusion

• $T_0=10^5$ K, $n_0=0.1$ cm⁻³, $B_0=5$ μ G, $x_0=0.15$ R_{sh}, Self-generated diffusion

- $T_0=10^5$ K, $n_0=0.1$ cm⁻³, $B_0=5$ μ G, $x_0=0.15$ R_{sh} , Bohm diffusion
- Alfvén velocity in the amplified magnetic field

Type I-like SNR

$$T_0 = 10^4 \text{ K}, n_0 = 1 \text{ cm}^{-3}$$

Type II-like SNR (no winds)

 $T_0 = 10^6 \text{ K}, n_0 = 0.01 \text{ cm}^{-3}$

The total diffuse spectrum of galactic CRs may be the superposition of very different contributions in terms of slope, normalization and composition

Open issues about galactic CR spectrum

- Which is the contribution by Type I/II SNe?
 - Role of pre-SN stages (winds, hot bubbles...)
- Which is the contribution of heavy nuclei to the SNR dynamics?
 - Abundances relative to H in the sources
- How does injection work?
- Is our knowledge of MF amplification and damping suitable to address this problem?
 - Magnetic feedback
 - Non-resonant modes properties
- Is secondary reacceleration relevant in order to explain positron/secondary nuclei fluxes at Earth?