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Phase Space Fluid

Fluid: No individual particles

A charged particle brought into a
plasma causes a redistribution of the

charge p(x,t) (Fluid) e |

Electron density

The particle is shielded over the
distance vt/wp (Thermal speed over
plasma frequency): Debye length A,

L 5
Y-Position in Debye lengths S X-Position in Debye lengths

No binary interactions are important
for the plasma on scales A > A,

* Plasma interaction: macroscopic electromagnetic fields.
* Phase space Fluid: Charge density p(x,t) =q [ f(x,v,t) dv



The Vlasov Equation

Conszider a zingle species of nonrelativistic electrons=.
Many electrons per Debyve sphere = f.(T,7,t).

The moments are £.(T,2) = —e [ £.(T,¥,2)d0’ (Charge)
I = —e[0f(T,7,2)d7 (Current)

The (collizion-lesz) electron plasma iz then evolved in time through:

The Vlazov equation
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The Particle-In-Cell Method
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The PIC method approximates f, (x,v,t) by computational particles.
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The Numerical Scheme
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*Each computational electron j carries a micro-current j, ~ q, v,
*Distribute micro-current onto neighboring grid nodes using D,,D,

*Sum over all computational electrons j : Get macroscopic current J at grid nodes F,
*Update E and B with Maxwell’s equations on grid nodes F,

*Interpolate E and B from grid nodes F, to computational electrons and update
their velocity and position.



Consequence of finite grid (1)

Light waves at high wavenumbers k

move through the plasma with speed | | o=k
of light c. 0.8

However: Result is obtained fromthe . 06}

differential equations. e oy = (K
3 04}
PIC codes solve Maxwell’s equations
) : 0.2]
on a grid — numerical effects close to ® =,k
scales comparable to the cell size Ax " | | | |
and to the time step At 0 0.2 0-4kA /RO-G 0.8
For illustration: Ax /At =c¢ X
Black: True light mode. Purple circle: Plasma (finite grid) instability?

Blue: Numerical light mode.
Red: Beam mode for v, = 0.9c. k > k(purple circle): Numerical Cherenkov?



Consequence of finite grid (2)

Simulation test: Beam instability
in unmagnetized plasma

Bulk plasma: Protons and electrons,
nonrelativistic temperature, no mean
speed.

Beam plasma: Protons and electrons,
nonrelativistic temperature, beam
Lorentz factor 4, 0.1 times the bulk
density, beam direction: x

Beam modes “superluminal” within a
small angular interval around k -axis
and at high wavenumbers.

We expect finite grid instability (sharp
resonance) at high k, and low k,

k c/Q

-0.5 0 k(i.g/Qp 1 1.5 2

(Note: k-axes are 10-logarithmic.)
Observation: “Unphysical wave modes”
grow obliquely to beam velocity vector.



Consequence of finite grid (3)

* 1D PIC simulation along x, beam

moves with the speed v, obliquely to
the box in x,y plane. Projected speed 0.5
Vp, <V,

1.0

IO.QOZ

0.B7¢

0.45¢

cﬂ_
S 0.0
* Oblique propagation: We excite the

electromagnetic instability! o

* Sample the £ ( x, t ) for some time. 10

‘OAOC' 0.25 0.50
K /Ky
* Get power spectrum [E (k,, w)/[?

* We observe in the upper quadrant the beam dispersion relation w = v,k

* We observe in both quadrants the numerical light mode with decreasing phase
speed modulus above kA x /1T =0.3

* Two sidebands: The intersection of the lower with the O-mode is unstable.



Consequence of the finite grid (4)

A cold beam with speed v, moves
across a grid cell during the time —
t,=AX/ Ve . =
o=V k

The periodicity of a simulation .
grid is experienced by the beam

with the frequency w, =21 /t, 0s = -ck

O)At/‘ﬂ:
o

o, = (k)

The beam motion across
”periodic potentials” result in

o= ka-m

sidebands, separated by w, from 0 0.2 0-4kA /RO-G 0.8
the beam dispersion w =v,, k X



Simulation constraints (1)

We need to resolve the Debye length ve/wp (neglect ions for it)

A temperature of 100 keV implies a thermal speed of v, = 0.4c and
we need 2.5 cells per electron skin depth c/wp

The proton skin depth (equal proton and electron density) is then
resolved by 100 cells.

Proton filament size is initially = proton skin depth, but the
filaments merge. Minimize periodicity effects - resolve 20 proton
skin depths in each direction orthogonal to the flow direction,
giving 2000 * 2000 cells.

A full shock development may require 200 proton skin depths along
the flow velocity vector: Grid size = 20000*2000*2000 = 10%!cells



Simulation constraints (2)

We need 10! cells and 1013 computational particles.
Each particle: 3 doubles for X and 3 for P = 48 bytes
Physical memory: 10%-103 Terabytes!

Resolve well electron times: At = 2n/wp/10

Resolve well shock times: T, = 100 18362 2/ w,
— 40000 time steps

My code does on one CPU a time step with 4 millions of CPs per
second.

A time step on 1 CPU needs 10° - 10’ s and the simulation 10*! s.
Data write out: Sample electron and proton scales!
— 10° samples of phase space, each with 10° Terabytes



Simulation constraints (3)

Let us assume the computer can do this:

A phase space fluid has in general 3 spatial and 3 velocity
dimensions and the time dimension: 6D + Time

Consequence: We must reduce dimensions or spatio-temporal
scales (no heavy ions)

Both can alter the physics.

“The purpose of computing is insight not numbers®.
(Hamming,1972)



Gamma Ray Bursts

Radiation source: Accelerating
charged particles

Particle acceleration: Macroscopic
electromagnetic fields

Observed radiation requires:
Extremely hot electrons and
strong magnetic fields

Provided by: Fast shocks moving
through the jet

_éé?
7—5;
Dense plasma Tenuous plasma
=
Vb -V b =
E— B

Filamentation instability does not like:
1.Asymmetric plasma clouds
2.Guiding magnetic fields

3.High plasma temperatures

Let’s use all of it.



Plot (a): y

Plot (b): vy
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"Short” 2D simulations

*Let the plasma collide at x=x, The collision speed is 0.9c and points along x.

*The dense cloud moving to the right is 10 times denser than the thin cloud moving
to the left. The clouds move at equal velocity moduli.

*We focus on the interval x>x, where the dense cloud moves into the thin cloud.
*Temperature = 100 keV, electron cyclotron frequency equals plasma frequency in
dense cloud. Magnetic field tilted with 10 degrees relative to flow.

*/B, [(a) and [B, [ (b) in left column and E, (a) and [E, +iE,[ (b) in right column.
Simulation time w,t=209
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1D Simulation (1)

Here we animate in time the t<10°
ion (m./ m_=400) phase 1.5
space distribution along the
collision direction. '
X-unit: Box-averaged electron
skin depth. o 05
£
Time in inverse box-averaged o~
electron plasma frequencies.
Colorbar: 10-logarithmic -0.5
number of computational e ALl AV A LN L o8 L1
particles. 1
0 200 400 600
X-X

0

2.5

11.5

0.5



1D Simulation (2)

Left column: Projected phase
space distributions of electrons at
simulation’s end at t w, = 5000

Left column: Projected phase space
distributions of ions at simulation’s

end att w, = 5000
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Summary

Brief outline of a phase space fluid and illustration of the
Particle-In-Cell method.

Aspects of the simulation: Need for reduced geometries
Example simulation of an internal GRB shock.
Future work: Vary parameters and assess their impact

Thank you for your attention!
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