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X-ray diagnostics

• Claimed to set stringent limits on density in 
some cases (eg RXJ1713-3945)

• Depend crucially on strong shock heating

• Most analyses neglect particle acceleration



But...

• If strong particle acceleration (>50%)

• less energy available for heating

• shock structure changes quite 
dramatically

• How does this affect the SNR evolution 
and diagnostics?



A SNR, once it has ended the initial ballistic expansion 
phase, is just a bubble of high energy-density material 

expanding into the ambient medium.
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=⇒ Ṙ ≈

√
ESN

ρ0
R−3/2

from which follows the well know Sedov relation
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This is thus a very robust relation and is not 
expected to change significantly even with very 

strong particle acceleration



However the shock does become much more compressive 
for at least four reasons:

• Softer equation of state

• Escape of high-energy particles

• Geometrical dilution

• Diffusion to the interior



Can capture much of this with an additional energy 
flux of high-energy particles
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Estimate of energy flux term.
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is acceleration number flux, thus associated 
energy flux at the top end of the spectrum is
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But accelerated particle pressure is



and thus we can estimate

Φ ≈ PC(U0 − U1)
λ

,

λ ≈ ln(pmax/mc) f(p) ∝ p−4

≈ 2 f(p) ∝ p−3.5

where lambda measures the 
dominance of particles near the 

upper cut-off in the total pressure
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This gives

or equivalently

s = 1 +
3PG + 6PC

PG + PC (1− 2/λ)

Note that

s→∞ for PC >> PG and λ→ 2



Thus expect generally quite compressive shocks,

s ≈ 10...20

This allows use of a thin shell approximation 
due originally to Chernyi
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Mass of swept-up shell

and Newton’s law of motion gives



d

dt
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writing

Pint = αA(U0 − U1)

and it is not hard to show that consistency requires

α = 1/2

Interior pressure is just half the 
immediate post-shock pressure



So fluid element is swept up by the remnant, 
compressed in the shock, and then gradually 

relaxes into equilibrium with the interior.

If shocked at time t, takes about the same time 
again to exit from the compressed shell.

After that expands in pressure equilibrium 
with interior where

Pint ∝ R−3 ∝ t−6/5



If pressure dominated by cosmic rays,

PC ∝ ρ4/3

Thus density has to scale as

ρ ∝ P 3/4 ∝ t−9/10

and the ion temperature as

Ti ∝
PG

ρ
∝ t−3/5



Thermal history of a fluid element

Initially shocked at time t0

Expands and cools by a factor 2 over next t0

Then slow cooling as t−3/5

But ... how much heating in the shock?
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Self-regulated injection

• Assume injection (of ions) is “easy”

• Shock has to “throttle back” injection to 
avoid excessive energy demands on the 
acceleration

• Does this by weakening the sub-shock
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• Plausible arguments backed by simulations 
suggest that self-regulation requires the 
subshock to have an almost fixed 
compression ratio of between 2.5 and 3 if 
the injection is to be self-regulated

• In this case the temperature behind the 
subshock is a fixed (and small) multiple of 
the temperature upstream of the subshock.
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“Thermal” protons
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• For compression 2.5 the temperature ratio 
is just 12/5

• For compression 3.0 the ratio rises to 11/3

• This is of course only the subshock heating, 
but in the limit of no wave dissipation in 
the precursor the precursor heating is just 
by adiabatic compression



• Heating in precursor is by factor of  

• Thus

• And the postshock temperature is a 
multiple of the far upstream temperature 
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Big contrast to conventional shock heating,
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Temperature is determined purely by the 
square of the shock speed



Extreme illustration, total shock 
compression 10 with factor 2.5 in 
subshock and 4 in precursor, then

T2/T0 ≈ 42/3 12
5
≈ 6.05

Temperature can be as low as 6 times ambient!?

Clearly would not expect thermal X-rays in this case.



More generally
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Conclusions

• No fundamental objection to cold SNRs if 
particle acceleration is very effective.

• Might even expect anti-correlation between 
strong TeV emission and thermal X-rays.

• Bulk dynamics remains Sedov like and is 
little affected.



• Have ignored all heating due to wave 
dissipation, magnetic reconnection etc.

• Additional complication is electron/ion 
thermalisation

• Purely theoretical discussion of ideal case, 
but aim was to establish the minimal ion 
heating allowed by theory.

A few caveats


