High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope

Jonathan Granot

University of Hertfordshire

(Royal Society Wolfson Research Merit Award Holder)

on behalf of the Fermi LAT & GMB Collaborations

"Particle Acceleration in Astrophysical Plasmas", KITP, UCSB, Santa Barbara, CA, August 17, 2009

Outline of the Talk:

- New Space missions help drive progress in GRBs
- High-energy emission processes & pre-Fermi obs.
- Fermi: highlights from 1st year results
 - ◆ GRB081024B: 1st clearly short GRB above 1 GeV
 - ◆ GRB080916C: very bright, long & redshift interesting
 - ◆ GRB090510: bright, short & redshift truly amazing
 - ◆ Delayed onset & longer duration at high energies
 - ◆Lower limits on the Bulk Lorentz factor
 - Distinct high-energy spectral component
 - ◆ Limits on Lorentz invariance violation
- Conclusions

GKDS: DMCI FIISUOMCAL

overview 1967: Ist detection of a GRB (published in 1973)

- In the early years there were many theories, most of which invoked a Galactic (neutron star) origin
- 1991: the launch of CGRO with BATSE lead to significant progress in our understanding of GRBs
 - ♦ **BATSE**: $\sim 30 \text{ keV} 2 \text{ MeV}$, full sky ($\sim \frac{1}{2}$ Earth occ.)
 - ◆ Isotropic dist. on sky: favors a cosmological origin
 - ◆ Bimodal duration distribution: short vs. long GRBs
 - ♦ EGRET: $\sim 30 \text{ MeV} 30 \text{ GeV}$, FoV $\sim 0.6 \text{ sr}$

- **BeppoSAX** (1996-2002): lead to **discovery** of **afterglow** (1997) in **X-rays**, **optical**, **radio** (for long GRBs)
- This led to redshift measurements: clear cut determination of the distance/energy (long GRBs) E_{γ,iso} ~ 10⁵² -10⁵⁴ erg
- ♦ Afterglow observations provided information on beaming (narrow jets: $E_{\gamma} \sim 10^{51}$ erg), event rate, external density, supernova connection (\Rightarrow long GRB progenitors)
- **Swift** (2004-?): autonomously localizes GRBs slews in ~1-2 min) and observed in X-ray + optical/UV
- Discovered unexpected behavior of early afterglow
- ◆ Led to the discovery of afterglow from short GRBs → host galaxies, redshifts, energy, rate, clues for progenitors
- Fermi (2008-?): may also lead to significant progress in

Fermi Gamma-ray Space Telescope (Fermi Era; launched on June 11, 2008):

- Fermi GRB Monitor (GBM): 8 keV 40 MeV (12×NaI 8 10³ keV, 2×BGO 0.15-40 MeV), full sky
- Slightly less sensitive than BATSE: expected to detect ~ 200 GRB/yr (≥ 60 in the LAT FoV)
- Large Area Telescope (LAT): 20 MeV 300 GeV FoV ~ 2.4 sr; up to 40 times the EGRET sensitivity

GRB: High Energy Emission Processes

- **Leptonic**: Inverse-Compton or Synchrotron-Self Compton:
 - $E_{p,SSC}/E_{p,syn} \sim \gamma_e^2$, $L_{SSC}/L_{syn} = Y$, $Y(1+Y) \sim \epsilon_{rad}\epsilon_e/\epsilon_B$
- Hadronic processes: photopair production $(p+\gamma \rightarrow p+e+e^-)$
 -), proton synchrotron, pion production via p-y (photopion)
 - interaction or p-p collisions
- The neutral pions decay into high energy photons $\pi^0 \rightarrow \gamma \gamma$ that can pair produce with lower energy photons $\gamma \gamma \rightarrow e^+e^-$.
 - producing a pair cascade
- Fermi may help determine the identity of the dominant emission mechanism at high & low energies
- Most of the radiated energy can
 be in the LAT range (energetics)

High energy emission from GRBs: Pre-Fermi era

Little known about GRB emission above ~100 MeV

EGRET detected only a few GRBs, most notably:

- ♦ GRB940217: GeV photons were detected up to 90 minutes after the GRB trigger
- ◆ GRB941017: distinct highenergy spectral component (up to 200 MeV), with a different temporal evolution & at least 3 times more energy
- AGILE recently observed GRB080514B and detected photons up to a few 100 MeV lasting somewhat longer than the soft gamma-rays

GRB941017 EGRET

GRB080514E

Fermi GRB detections:

GBM:

- → ~ 230 GRB/yr
 - (~18% are short)
- ♦ ≥ ½ in LAT FoV
- Automated repoint

LAT: 9 GRBs in 1st year

◆ **G**RB080825C:

relatively dim, long (1st LAT GRB)

- ◆ GRB080916C: bright, long GRB(Abdo et al. 2009, Science, 323, 1688)
- ◆ GRB081024B: first short GRB with >1 GeV emission
- → GRB090510: bright, short GRB (submitted to Nature; arXiv:0908.1832)

Fermi LAT GRB detection rate

■ ~ 9 GRB/yr with >10 photons above 100 MeV

~ 2 GRB/yr with >10 photons above above 1 GeV

Somewhat below estimates based on a Band spectrum

for a bright GRB

BATSE sample

Suggests: most GRBs don't have significant excess (HE component) or deficit (cutoff) in the LAT energy range w.r.t the extrapolation of a Band spectrum from lower energies

GRB080825C: the 1st LAT GRB

The 1st LAT events coincide with the 2nd GBM peak The high-energy emission lasts longer: highest energy

photon arrives when the GBM emission is very weak

GRBU81U24B: In short GRB >

GeV

- 1st LAT events coincide with 2nd GBM peak
 (delayed HE onset)
- The HE emission lasts longer than low-energies
- One spectral component that hardens with time
- Lower limit on Γ from pair opacity constraints:

$$\Gamma_{\min}(z=0.1)\approx 150$$

$$\Gamma_{\rm min}(z=3.0)\approx 900$$

(highest then for a short GRB, but z is uncertain)

GRB080916C: multi-detector light curve

GRB080916C: multi-detector light curve

Most of the emission in the 2nd peak occurs later at higher energies

This is clear evidence of spectral evolution

The delay of the HE emission seems to be a common feature of the GRBs observed by the LAT so far.

GRB080916C: time resolved spectroscopy

A likelihood ratio test in bin 'd': the probability of having no additional HE spectral component is 1% (5 bins/trials) Possible pair production ($\gamma\gamma \rightarrow e^+e^-$) of HE photons with the EBL leaves this probability from unchanged to 0.03% depending on the model chosen.

- Time resolved spectroscopy over 6 decades in energy!!! (10 keV 10 GeV)
- Consistent with a Band function: a single dominant spectral component
- No strong evidence for an additional spectral component

GRB080916C: time resolved spectroscopy

A likelihood ratio test in bin 'd': the probability of having no additional HE spectral component is 1% (5 bins/trials) Possible pair production ($\gamma\gamma \rightarrow e^+e^-$) of HE photons with the EBL leaves this probability from unchanged to 0.03% depending on the model chosen.

The Stecker et al. model/s would imply $\tau_{\gamma\gamma} \sim 3-4 \Rightarrow > 3 \, \sigma$ for distinct HE spectral component that carries significant energy

For other EBL models $\tau_{\gamma\gamma} \ll 1$: weak evidence for an extra HE spectral component (5% chance probability for no HE-

GRB080916C: Spectral Evolution

Band function fits

Soft → hard → soft E_{peak} evolution

Low (α) & high (β) energy photon indexes change significantly only between time bins 'a' and 'b'

Delayed onset of HE emission: Possible Causes

- 1. The 1st and 2nd peaks are emitted from distinct physical regions (e.g. different colliding shell in the internal shocks model)
- Unclear why a similar behaviour occurs in most LAT GRBs (if it is random then some GRBs should have a reverse order)
- 2. opacity effects don't work well as there is no cutoff or steepening of the spectrum at high-energies
- 3. Hadronic origin: time to accelerate protons & develop pair cascade, if the high-energy emission is of hadronic origin
- ♦ Two distinct spectral components (leptonic at low-energies & hadronic at high-energies) expected but not seen; requires a total energy $\gg E_{\gamma,iso}$ (energy crisis); hard to explain sharpness of 1st LAT peak + coincidence with 2nd

Other Interesting Results for GRB080916C:

- Large fluence $(2.4 \times 10^{-4} \text{ erg/cm}^2)$ & redshift $(z = 4.35 \pm 0.15)$ \Rightarrow record breaking apparent isotropic energy release $E_{\gamma,iso}$ $\approx 8.8 \times 10^{54} \text{ erg} \approx 4.9 \text{ M}_{\odot}\text{c}^2 \Rightarrow \text{suggests strong beaming}$ (jet)
- The HE (>100 MeV) emission is detected for >1000 s
- Single dominant emission mechanism: if synchrotron, SSC is expected, and can avoid detection if $E_{peak,SSC} \gg 10$ GeV

 $(\gamma_e \gg 100)$, or if $Y \approx \epsilon_e/\epsilon_B \lesssim 0.1$ (also constrains other options)

synchrotron (?)

possible SSC

~10 GeV

V

GRB090510: short, hard & bright

- $z = 0.903 \pm 0.003$
- $E_{\gamma,iso} \approx 1.1 \times 10^{53} \text{ erg}$
- 31 GeV photon at 0.83 s
- Onset of main emission
 episode occurs later at
 higher photon energies
- HE emission lasts
 - longer (>0.1 GeV det. up to 200 s)
- Triggered on a precursor
- Low-energy spikes at

GRB090510: Spectral Evolution

- The high-energy photon index ß hardens during main emission episode
- A significant excess above a single Band spectrum at high-energies:

 distinct high-energy spectral component (>5 or significance); power-law
- Required at 0.6-0.8 s
- Carries 37% of fluence
- HE & LE components
 - are correlated in time:
 - same emission region
 - (1st GRB to show this)
- 0.8-0.9 s not requiredbut likely still there
- 0.9-1.0 s single softer power-law; a break is needed at ~a few MeV

High-energy spectral component: Possible Origin

- Leptonic: inverse-Compton (SSC)?
 - ◆The gradual increase in β is not naturally expected
 - Hard to reconcile the relative values of the photon index of the HE component Band spectrum at low energies
- Hadronic: (pair cascades, proton synchrotron)?
 - ◆ May account for a delayed HE onset (time to accelerate protons & develop cascades), but not necessarily for the gradual increase in β
 - Hard to produce the observed sharp spikes that coincide with those at low energies
 - Requires a very large total energy: $E_{total}/E_{y,iso} \sim 10^2 10^3$

GRB080916C: Bulk Lorentz factor $\Gamma \gtrsim 900$

■ Robust + highest lower limits on Γ from opacity constraints: $\Gamma_{\min} \approx 890 \pm 20$ (bin 'b', for $\Delta t = 2$ s) & $\Gamma_{\min} \approx 600$ (bin 'd')

Limits on Lorentz Invariance Violation

Some QG models violate Lorentz invariance: $v_{ph}(E_{ph}) \neq c$

$$c^{2}p_{ph}^{2} = E_{ph}^{2} \left[1 + \frac{E_{ph}}{M_{QG,l}c^{2}} + \left(\frac{E_{ph}}{M_{QG,2}c^{2}} \right)^{2} + \dots \right] , v_{ph} = \frac{\partial E_{ph}}{\partial p_{ph}} \approx c \left[1 - \frac{1 + n}{2} \left(\frac{E_{ph}}{M_{QG,n}c^{2}} \right)^{n} \right]$$

- A high-energy photon E_h would arrive after (or possibly before in some models) a low-energy photon E_l emitted together
- GRB080916C: highest energy photon (13 GeV) arrived 16.5 s after low-energy photons started arriving (= the GRB

$$\begin{array}{c} \text{trigger} \Rightarrow \text{a conservative lower limit:} \\ \text{GRB} & \text{Conservative lower lim$$

$$\Delta t = \frac{(1+n)}{2H_0} \frac{E_h^n - E_l^n}{(M_{\rm QG},n}c^2)^n} \int_0^z \frac{(1+z')^n}{\sqrt{\Omega_m(1+z')^3 + \Omega_\Lambda}} \, dz'$$
 (Jacob & Piran 2008)

n = 1,2 for linear and quadratic Lorentz invariance violation, respectively

GRB090510: L.I.V

Table 2 | Limits on Lorentz Invariance Violation

#	$t_{start} - T_0$	Limit on	Reasoning for choice of t _{start}	E_l^\dagger	Valid	Lower limit on
#	(ms)	$ \Delta t $ (ms)	or limit on Δt or Δt/ΔE	(MeV)	for s _n *	$M_{QG,1}/M_{Planck}$
(a)*	-30	< 859	start of any < 1 MeV emission	0.1	1	> 1.19
(b)*	530	< 299	start of main < 1 MeV emission	0.1	1	> 3.42
(c)*	648	< 181	start of main > 0.1 GeV emission	100	1	> 5.63
(d)*	730	< 99	start of > 1 GeV emission	1000	1	> 10.0
(e) [◆]	_	< 10	association with < 1 MeV spike	0.1	±1	> 102
(f) [♦]	_	< 19	If 0.75 GeV [‡] γ-ray from 1 st spike	0.1	-1	> 1.33
(g) ^	Δt/ΔE <30 ms/GeV		lag analysis of > 1 GeV spikes	_	±1	> 1.22

- All of our lower limits
 on M_{QG,1} are above
 M_{Planck}
- a-e based on 31 GeV γ-ray
- a-d assume that $t_{em} \ge t_{strat}$ $t_{strat} = emission onset time$
- e,f association with a specific low-energy spike

Conclusions:

- ~ 9 LAT GRBs/yr suggest that most GRBs do not strongly deviate from a Band spectrum in LAT range
- Spectra: most LAT GRBs are consistent with a single dominant component; 090510 has a distinct HE spectral component (temporally correlated with low energy comp.)
- Many LAT GRBs show later onset & longer duration of the high-energy emission, relative to low energies
- short & long GRBs seem to have similar HE properties: HE delayed onset & longer duration, high rim
- GRB080916C: $\Gamma \gtrsim 900$, $M_{QG,1}/M_{Planck} > 0.1$