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- Key Physics of Diffusive Shock Acceleration (DSA)

* Fermi 1st order acceleration process

* wave-particle interactions: CR injection, wave generation,..

- Numerical Method

* Time-dependent Kinetic simulations using

CRASH (Cosmic Ray Acceleration Shock) code

- Self-Similar Evolution of CR modified shocks

* Analytic form for time-dependent CR spectrum, f(p,t)

* comparison of time-dependent and steady-state 
solutions

- Summary 

Outline

CR Modified Shocks
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Key Physics of DSA

Amplification of B fields
 Higher Pmax

-Scattering of particles
-Dissipation of waves

U kBohm Diffusion: κ(p)

3CR Modified Shocks



- waves drift upstream

- waves dissipate energy & heat 
the gas.

- CRs are scattered and isotropized in 
the wave frame  rather than the fluid 
frame.
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streaming 

CRs
generate 
waves
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Particle injection, Wave generation, drift & dissipation

suprathermal particles 

leak upstream and become CRs  (thermal leakage 
injection implemented in Kang et al. 2002)

 generation of waves by wave-particle interactions

& Amplification of B fields

(not implemented yet in CRASH: next task,

see Vladimirov’s and Blasi’s talks later).
CR Modified Shocks
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W= wave dissipation heating,  uw = drift speed of waves

L= thermal energy loss due to injection, Q= CR injection

ordinary gasdynamics EQs 

+ Pc terms

Basic Equations for Kinetic DSA Simulations
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Diffusion Convection Eq. for isotropic part of f(p)

5

(1D plane-parallel)

CR Modified Shocks
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Simple models for wave transport, diffusion, injection  

injection CR  todue lossenergy   thermal

heating & disspation   wave:),(
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Numerical Model for Thermal Leakage Injection in CRASH
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“Transparency function”: probability that particles at a given 

velocity can leak upstream.   (adopted from Malkov 1998)

e.g.  esc = 1  for CRs, esc = 0 for thermal ptls
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CRsgas ptls

 B=0.3

)/,( dBesc u : transparency function
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Numerical Model for Thermal Leakage Injection in CRASH

CR Modified Shocks
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Bohm type diffusion:

- wide range of diffusion length scales to be resolved:

from pinj/mc(~10-2) to outer scales for the highest pmax/mc (~106)

1) Shock Tracking Method (Le Veque & Shyue 1995)

- tracks the subshock as an exact discontinuity

2) Adaptive Mesh Refinement (Berger & Le Veque 1997)

- refines region around the subshock with multi-level grids

Nrf=400

Numerical Tool: CRASH Code (Kang et al. 2001)
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sdiff upl /)(

CR Modified ShocksComoving with the shock



where the slope, q = 3/(-1) = 3u1/(u1-u2)

( = 2/1=u1/u2 determined by the shock Mach No.)

for strong gas shock :    4, q  4, 

(for g = 5/3 adiabatic index) independent of M

(when non-linear feedback due to CR pressure is insignificant)
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Prediction of DSA theory in test particle limit

CR Modified Shocks

But DSA is quite efficient  shock structure is modified 
by CR pressure.
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U(p) is the precursor velocity that 

particles with p feel on average.
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Particles with different p
experience different u.

dependent  momentum
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Test-particle 
slope=4

CR Modified Shocks

CR modified shock structure
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Wave drift steepens CR spectrum & reduces acceleration efficiency

Slope of test-particle spectrum

0
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(no wave drift)
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After Pc,2 reaches to 
an asymptotic value,

 the shock flow 
becomes self-similar. 
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The shock structure 
stretches linearly 
with t, independent 
of κ(p).

13

DSA Kinetic Simulation Results: Self-similar stage

M=10 shock

CR Modified Shocks
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.* Shock structure  broadens linearly with time independent of 

age.shock given  aat  higher   smaller   max

* p

But hydrodynamic structure is independent of . *
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DSA kinetic simulation results: Early Evolution

Initial conditions at t=0
M0=10 gasdynamic shock
No pre-existing CRs
B=0.2, =0.1
(p)=10-6p(/0)

-1
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The shock structure 
stretches linearly 
with t, independent 
of κ(p).

in timeconstant   , 2,2, cg PP
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M=10 shock

CR Modified Shocks

DSA Kinetic Simulation Results: Self-similar stage
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CR spectrum during the Self-similar stage

2,cP

partial pressure
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simulation

CR distribution function at  shock
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sq

tq

two power-laws

CR Modified Shocks
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Model t=1, 10, 103, 105



Why CR modified shocks become self-similar ?

constant  , , .. 

steady,  structureshock then 

constantpostshock 
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CR modified 
shocks.
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CR Modified Shocks

semi-analytic model for f(p) for steady-state 
shocks by Berezhko & Ellison 1999



Semi-analytic model: Amato & Blasi 2005, 2006, Capriloi et al 2009

Non-linear amplification of B field driven by CR streaming

Hyesung Kang

M0 =

f(p)p4

slope=q(p)

p max=105 mc 

(upper momentum boundary)

Solve DC equation for f(x,p) along with gasdynamic equations 
in the steady state limit with a fixed p max

21
CR Modified Shocks

sq
tq
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time-dependent solution and steady-state solution with 
the same pmax are the same.

Steady state solution is 

achieved by setting a upper 

momentum boundary at

(blue solid lines)
Precursor becomes steady.

Highest energy particles escape 

through the upper momentum 

boundary.

510ubp

Time-dependent solution 

at t=1, 4 

(red dashed lines)
Precursor broadens as pmax 

increases with time.

5

max 10)( tp
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Solid lines: our kinetic 
simulation data

Filled circles: Monte 
Carlo simulation data 
from Ellison et al. 
1993

Open circles: Hybrid 
simulation data from 
Ellison et al. 1993

Comparison of different methods: Kang & Jones 1995

downstream upstream



Time asymptotic solutions from DSA simulations
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The solutions depend on the details of 

injection, wave generation, drift, and 

dissipation models, especially for weak 

shocks. Nonlinear feedback is important for 

strong shocks.
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In CR modified shocks, the precursor & subshock
transition approach the time-asymptotic state.

Then shock precursor structure evolves in a self-similar 
fashion, depending only on similarity variable, =x/(us t). 
During this self-similar stage, the CR distribution at the 
subshock maintains a characteristic form: two power-laws

SUMMARY

CR Modified Shocks

constant /  ,/ , , 12022,2,   stcg PP (need numerical simulations)
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Nonlinear DSA & modified structure

CR injection due to
cross-field diffusion & 

streaming

Self-generation of waves &
Amplification of B fields

Self-consistent
diffusion coefficient)

Scattering 

by waves
CR streaming 

instability

diffusion in a converging flow 

 Fermi 1st order

Fermi 2nd 

order

Growth & 

Damping of  waves

CR Injection 

& Scattering

Predict f(p),  pmax

non-thermal radiation

(observation)

Feedback from Plasma Physics 

on wave-particle interactions


