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Shocks in galaxy clusters

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Topics of interest

consistent picture of non-thermal processes in galaxy
clusters (radio, soft/hard X-ray, γ-ray emission)
→ illuminating the process of structure formation
→ history of individual clusters: cluster archeology
fundamental plasma physics complementary to SNRs:

diffusive shock acceleration for intermediate Mach numbers
origin and evolution of large scale magnetic fields
nature of turbulent models

understanding the non-thermal pressure distribution to
address biases of thermal cluster observables (gold
sample of clusters for precision cosmology)
nature of dark matter: annihilation signal vs. cosmic ray
(CR) induced γ-rays
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Radiative simulations with GADGET – flowchart

CP, Enßlin, Springel (2008)
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Radiative simulations with cosmic ray (CR) physics

CP, Enßlin, Springel (2008)
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Radiative simulations with extended CR physics

CP, Enßlin, Springel (2008)
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Previous numerical work on Mach number statistics

Miniati et al. (2000, 01, 02, 03): Eulerian approach, coarse resolution,
passive CR evolution, NT cluster emission

Ryu et al. (2003, 07, 08), Kang et al. 2005: Eulerian Mach number
statistics (post-proc.), vorticity and magnetic field generation

Pfrommer et al. (2006, 07, 08): Lagrangian approach, Mach number
statistics (on the fly), self-consistent CR evolution, NT cluster emission

Skillman et al. 2008: Eulerian AMR, Mach number statistics (post-proc.)

Hoeft et al. 2008: Lagrangian approach, Mach number statistics
(post-proc.)

→ increasing number of papers recently, with more expected to come that
focus on the non-thermal emission from clusters and topics related to cosmic
magnetic fields (as we enter a new era of multi-frequency experiments).
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Detecting shock waves in SPH – Idea

Using the entropy conserving formalism with the entropic function
A(s) = Pρ−γ (Springel & Hernquist 2002):

A2

A1
=

A1 + dA1

A1
= 1 +

fhh
M1c1A1

dA1

dt
=

P2

P1

(
ρ1

ρ2

)γ

ρ2

ρ1
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

P2

P1
=

2γM2
1 − (γ − 1)

γ + 1

SPH shock is broadened to a scale of the order of the smoothing
length h, i.e. fhh, and fh ∼ 2

approximate instantaneous particle velocity by pre-shock
velocity (denoted by v1 =M1c1)
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Detecting shock waves in SPH – Details

1 Broad Mach number distributions f (M) = d2uth
dt d logM

because particle quantities within the (broadened) shock
front do not correspond to those of the pre-shock regime.
Solution: introduce decay time ∆tdec = fhh/(M1c),
meanwhile the Mach number is set to the maximum (only
allowing for its rise in the presence of multiple shocks).

2 Weak shocks imply large values of ∆tdec:
Solution: ∆tdec = min[fhh/(M1c),∆tmax]

3 Strong shocks withM > 5 are slightly underestimated
because there is no universal shock length.
Solution: recalibrate strong shocks!
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Shock tube: thermodynamics
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Shock tube: Mach number statistics
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Shock tube (CRs & gas)
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Shock tube (CRs & gas): Mach number statistics
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Cosmological shock statistics

more energy is dissipated at later times

mean Mach number decreases with time

Christoph Pfrommer Cosmic Rays in Galaxy Clusters



Cosmological structure formation shocks
Simulating cosmic rays

Diffuse radio emission in clusters

Observations
Cosmological galaxy cluster simulations
Mach number distribution

Cosmological shock statistics: influence of reionization

reionization epoch at zreion = 10 suppresses efficiently strong
shocks at z < zreion due to jump in sound velocity

cosmological constant causes structure formation to cease
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Cosmological shock statistics: CR injection

Mach number dependent injection efficiency of CRs favors
medium Mach number shocks (M & 3) for the injection, and
even stronger shocks when accounting for Coulomb interactions

more energy is dissipated in weak shocks internal to collapsed
structures than in external strong shocks
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Diffusive shock acceleration – Fermi 1 mechanism (1)

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p

strong shock

10 GeV

weak shock

keV

log f
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Diffusive shock acceleration – efficiency (2)

CR proton energy injection efficiency, ζinj = εCR/εdiss:

2.0 2.5 3.0 3.5 4.0
0.001

0.010

0.100

1.000

C
R

en
er

gy
in

je
ct

io
n

effi
ci

en
cy
ζ i

nj

αinj

Mach numberM

kT2 = 10 keV
kT2 = 0.3 keV
kT2 = 0.01 keV

∞ 3
√

5
√

11/3
√

3

Christoph Pfrommer Cosmic Rays in Galaxy Clusters



Cosmological structure formation shocks
Simulating cosmic rays

Diffuse radio emission in clusters

Observations
Cosmological galaxy cluster simulations
Mach number distribution

Cosmological Mach numbers: weighted by εdiss
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Cosmological Mach numbers: weighted by εCR
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Our philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
capturing as many physical properties as possible
requiring as little computational resources as necessary

Assumptions:
protons dominate the CR population
a momentum power-law is a typical spectrum
CR energy & particle number conservation
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CR spectral description

p = Pp/mp c

f (p) = dN
dp dV = C p−αθ(p − q)

q(ρ) =
(

ρ
ρ0

) 1
3 q0

C(ρ) =
(

ρ
ρ0

)α+2
3 C0

nCR =
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0
dp f (p) = C q1−α

α−1
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mpc2

3

∫ ∞

0
dp f (p) β(p) p

=
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6 B 1
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)
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Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:
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Cooling time scales of CR protons

Cooling of primordial gas:
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Radiative cool core cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Mach number distribution weighted by εCR,inj

1

10

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ h

-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

〈M
ε̇

C
R
,in

j〉
/
〈ε̇

C
R
,in

j〉

Christoph Pfrommer Cosmic Rays in Galaxy Clusters



Cosmological structure formation shocks
Simulating cosmic rays

Diffuse radio emission in clusters

Formalism
Cosmic ray pressure
Cosmological implications

Mach number distribution weighted by εCR,inj(q > 30)
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CR pressure PCR
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Relative CR pressure PCR/Ptotal
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CR phase-space diagram: final distribution @ z = 0
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CR pressure and hydrostatic masses
Non-radiative simulations: mean and σ over cluster sample

CR pressure profile:
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r2 , where Ptot = Pth + Pnth (CP & Majumdar in prep.)

“turbulence” dominates ∆M-bias, CR pressure only secondary
effect on ∆M
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CR pressure and hydrostatic masses
Radiative simulations with star formation: mean and σ over cluster sample

CR pressure profile:
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effect on ∆M
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CR impact on SZ effect: Compton y parameter
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Compton y difference map: yCR − yth
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Cosmic web: Mach number
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Radio gischt (relics): primary CRe (1.4 GHz)
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Radio gischt: primary CRe (150 MHz)
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Radio gischt: primary CRe (15 MHz)
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Radio gischt: primary CRe (15 MHz), slower magnetic decline
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Radio gischt illuminates cosmic magnetic fields
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Diffuse cluster radio emission – an inverse problem
Exploring the magnetized cosmic web

Battaglia, CP, Sievers, Bond, Enßlin (2008):

By suitably combining the observables associated with diffuse
polarized radio emission at low frequencies (ν ∼ 150 MHz,
GMRT/LOFAR/MWA/LWA), we can probe

the strength and coherence scale of magnetic fields on scales of
galaxy clusters,

the process of diffusive shock acceleration of electrons,

the existence and properties of the WHIM,

the exploration of observables beyond the thermal cluster
emission which are sensitive to the dynamical state of the
cluster.
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Population of faint radio relics in merging clusters
Probing the large scale magnetic fields

Finding radio relics in 3D cluster simulations using a friends-of-friends finder
with an emission threshold→ relic luminosity function
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radio map with GMRT emissivity threshold
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Relic luminosity function – theory
Relic luminosity function is very sensitive to large scale behavior of the
magnetic field and dynamical state of cluster:
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Rotation measure (RM)
RM maps and power spectra have the potential to infer the magnetic
pressure support and discriminate the nature of MHD turbulence in clusters:

-150

-75

0

75

150

R
M

 [
 r

ad
 m

-2
 ]

-0.4 -0.2 0.0 0.2 0.4
x [ Mpc ]

-0.4

-0.2

0.0

0.2

0.4

y 
[ 

M
pc

 ]

-5 0 5
arcmin

-5

0

5

ar
cm

in

   

1

10

P
[R

M
](k

) 
k2  [

ra
d2  m

-4
]

10-7

10-6

P
[B

z]
(k

) 
k2  [

µG
2  M

pc
]

P[RM] (k)
P[Bz] (k)

1 10 100
k [h Mpc-1]

1

10

P
[R

M
](k

) 
k2  [

ra
d2  m

-4
]

MFR1
MFR2
MFR3

Left: RM map of the largest relic, right: Magnetic and RM power spectrum comparing

Kolmogorow and Burgers turbulence models.
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Giant radio halo in the Coma cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
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Previous models for giant radio halos in clusters

Radio halos show a smooth unpolarized radio emission at
Mpc-scales. How are they generated?

Primary accelerated CR electrons: synchrotron/IC cooling times
too short to account for extended diffuse emission.

Continuous in-situ acceleration of pre-existing CR electrons
either via interactions with magneto-hydrodynamic waves, or
through turbulent spectra (Jaffe 77, Schlickeiser 87, Brunetti et al.
01, 04, Brunetti & Blasi 05, Brunetti & Lazarian 07, . . . ).

Hadronically produced CR electrons in inelastic collisions of CR
protons with the ambient gas (Dennison 80, Vestrad 82, Blasi &
Colafrancesco 99, Miniati 01, Pfrommer et al. 04, 08, . . . ).

All of these models face either theoretical short-comings when
comparing to observations or their success has not been
demonstrated in a cosmological framework.
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Hadronic cosmic ray proton interaction
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Cluster radio emission by hadronically produced CRe
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Thermal X-ray emission
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Radio gischt: primary CRe (150 MHz)
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Radio gischt + central hadronic halo = giant radio halo
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Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Observation – simulation of A2256

Clarke & Enßlin (2006) CP, Battaglia, Pinzke, in prep.

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Unified model of radio halos and relics (CP, Enßlin, Springel 2008)

Cluster radio emission varies with dynamical stage of a cluster:

Cluster relaxes and develops cool core: radio mini-halo develops due to
hadronically produced CR electrons, magnetic fields are adiabatically
compressed (cooling gas triggers radio mode feedback of AGN that
outshines mini-halo→ selection effect).

Cluster experiences major merger: two leading shock waves are
produced that become stronger as they break at the shallow peripheral
cluster potential→ shock-acceleration of primary electrons and
development of radio relics.

Generation of morphologically complex network of virializing shock
waves. Lower sound speed in the cluster outskirts lead to strong shocks
→ irregular distribution of primary electrons, MHD turbulence amplifies
magnetic fields.

Giant radio halo develops due to (1) boost of the hadronically generated
radio emission in the center (2) irregular radio ‘gischt’ emission in the
cluster outskirts.
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Non-thermal emission from clusters
Exploring the memory of structure formation

primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:

GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

Simbol-X/NuSTAR: future hard X-ray satellites (E ' (1−100) keV)

Fermi γ-ray space telescope (E ' (0.1− 300) GeV)

Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:

GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

Simbol-X/NuSTAR: future hard X-ray satellites (E ' (1−100) keV)
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Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of
CRs preserve the information about their injection and transport
processes and provide thus a unique window of current and past
structure formation processes and fundamental plasma astrophysics!

1 Cosmological hydrodynamical simulations are indispensable for
understanding non-thermal processes in galaxy clusters
→ illuminating the process of structure formation

2 Adiabatic compression disfavors the thermal pressure relative to
the CR pressure: only small bias of hydrostatic masses and
Sunyaev-Zel’dovich effect

3 Unified model for the generation of giant radio halos, radio
mini-halos, and relics: interplay of primary and secondary
synchrotron emission.
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Diffuse low-frequency radio emission in Abell 521

Brunetti et al. 2008, Nature, 455, 944:

colors: thermal X-ray emission, contours: diffuse radio emission,
→ presence of radio structure at 610 MHz and their absence at three
times higher/lower frequency is incompatible with synchrotron theory!
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Radio spectrum of “radio halo” in Abell 521
Brunetti et al. 2008, Nature, 455, 944:

asterisks denote spectrum of
the radio relic with αν ∼ 1.5

filled circles that of “radio
halo” with αν ∼ 2.1

“radio halo” interpretation:

re-acceleration of relativistic
electrons (Brunetti et al.)

hadronic model inconsistent
with spectra and morphology

“radio relic” interpretations:

aged population of
shock-accelerated electrons

populations of several
shock-compressed radio
ghosts (aged radio lobes)

→ polarization is key to differentiate
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