Electron Acceleration in Nonrelativistic Quasi-perpendicular Shocks

T. Amano^[1], M. Hoshino^[2], N. Shimada^[2]
[1] Nagoya University
[2] University of Tokyo

The Injection Problem

Injection Problem

escape condition : escape from downstream to

upstream

resonance condition: resonantly scattered by MHD

waves

these conditions should be satisfied for

Electron and Proton Injection

scattering by MHD turbulence requires cyclotron resonance

easy for protons

but not for electrons (because of their light mass)

Evidence for Ultra-relativistic Electrons at SNR Shocks

Electron acceleration is typically efficient at SNR while it is not at shocks in the heliosphere probabof the difference in Mach numbers

Quasi-perpendicular Shock (θ_{Bn}=80) [Amano & Hoshino, 2007]

Shock Surfing Acceleration (SSA)

Energetic electrons are generated at the leading $edg\epsilon$ of the foot

[e.g., Hoshino & Shimada 2002]

Shock Drift Acceleration (SDA)

further accelerated by the magnetishmikrbarreeftection

 $\begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \end{array} \end{array} \end{array} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} \end{array} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} \end{array} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} &$

Trajectory of Energetic Electron

The energy of reflected electrons is large enough for when the Ma > 100 (depends on shock angle)

Interpretation: Surfing and Drift Acceleration

non-adiabatic acceleration by SSA initiates SDA

assuming the pre-accelerated distribution function, we can estimate the fraction of

Application to SNR Shocks comparison between model and observation

Observation [e.g., Bamba et al. 2003]

injection efficiency ~ 10⁻⁴-10⁻³ non-thermal / thermal energy ~ 30%

Injection Model [Amano & Hoshino 2007]

injection efficiency ~ 2 × 10⁻⁴ (peak)

non-thermal / thermal energy ~ 10%

peak appears at $75 \le \theta_{Bn} \le 80$

2D Shock Structure

consider purely perpendicular shock with outof-plane B-field => electron acceleration

the reflected ion beam

Electron Acceleration

strong electron acceleration is observed in the

Shock Parameter

$$\begin{array}{ll} m_i/m_e &= 25 \\ \omega_{\rm pe}/\Omega_{\rm ce} &= 10 \\ \beta_i = \beta_e &= 0.5 \\ M_A & \sim 14 \end{array}$$

Very High Mach Number Shock (1D)

Fermi-like energy gain

electrons confined in a thin shock layer are energized by a mechanism similar to Fermi acceleration large amplitude magnetosonic waves/solitons play a role caveat: 1D perp.

shock, additional

Summary

the electron injection is difficult in general, but may be possible at high Mach number, Qperp shocks

we still do not understand the physics of electron acceleration in Q-para shocks (inefficient, at least in-situ observations at relatively low Mach number shocks)

injection of protons are unlikely to occur in Qperp shocks, but the self-generated turbulence may change the situation