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A Point About Injection!

•  Standard assumption is a power law!
  input electron spectrum!
  - this produces synchrotron break where!
    synchrotron lifetime of particles equals!
    age of PWN !

•  If injection spectrum has additional!
  structure (e.g. lower energy break),!
  this imprints itself onto the nebula!
  spectrum!
   - get PWN spectrum with multiple!
     breaks !
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Broadband Observations of 3C 58!

IRAC 3.6µm Chandra 

Slane et al.  2004 Slane et al.  2008 

Slane et al.  2004 

Chandra 
•  3C 58 is a bright, young PWN!
  - morphology similar to radio/x-ray; suggests!
    low magnetic field!
  - PWN and torus observed in Spitzer/IRAC!
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Broadband Observations of 3C 58!
•  3C 58 is a bright, young PWN!
  - morphology similar to radio/x-ray; suggests!
    low magnetic field!
  - PWN and torus observed in Spitzer/IRAC!

•  Low-frequency break suggests possible!
  break in injection spectrum!
  - IR flux for entire nebula falls within the!
     extrapolation of the X-ray spectrum!
   - indicates single break just below IR!

•  Torus spectrum requires change in !
  slope between IR and X-ray bands!
  - challenges assumptions for single power!
     law for injection spectrum!

Slane et al.  2008 

Slane et al. 2008 
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Fermi Studies of 3C 58!
•  3C 58 is a bright, young PWN!
  - morphology similar to radio/x-ray; suggests!
    low magnetic field!
  - PWN and torus observed in Spitzer/IRAC!

•  Low-frequency break suggests possible!
  break in injection spectrum!
  - IR flux for entire nebula falls within the!
     extrapolation of the X-ray spectrum!
   - indicates single break just below IR!

•  Torus spectrum requires change in !
  slope between IR and X-ray bands!
  - challenges assumptions for single power!
     law for injection spectrum!

•  Fermi LAT band probes CMB IC!
  emission from ~0.6 TeV electrons!
  - this probes electrons from the unseen!
    synchrotron region around Esyn = 0.4 eV!
    where injection is particularly complex!
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Broadband Observations of G21.5-0.9!

Chandra! Spitzer 24 µm, 8 µm! Spitzer 5.8 µm!
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Broadband Observations of G21.5-0.9!

Chandra! Spitzer 5.8 µm!
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I.   Injection Spectrum!

II.   Low Energy Particles!
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Broadband Emission from PWNe!

Gelfand et al.  2009!
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•  Spin-down power is injected into the PWN at !
  a time-dependent rate!

•  Assume power law input spectrum:!

  - Note: MHD models require γ=106 in upstream!
    wind – too high to explain radio emission;!
    there may be two electron populations!€ 

Q(t) =Q0 (t)(Ee /Eb )
−α

€ 

˙ E = IΩ ˙ Ω = ˙ E 0 1+
t
τ

 
 
 

 
 
 
−

n+1
n−1

•  Get associated synchrotron and IC emission !
  from electron population evolved nebula!
  - note X-ray synchrotron losses beyond cooling break!
  - joint fitting of synchrotron and IC spectra give B!
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Broadband Emission from PWNe!

Zhang et al. 2008!
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Mori et al. 2004!

•  Spin-down power is injected into the PWN at !
  a time-dependent rate!

•  Assume power law input spectrum:!

  - Note: MHD models require γ=106 in upstream!
    wind – too high to explain radio emission;!
    there may be two electron populations!

•  Get associated synchrotron and IC emission !
  from electron population evolved nebula!
  - note X-ray synchrotron losses beyond cooling break!
  - joint fitting of synchrotron and IC spectra give B!
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Broadband Emission from PWNe!

Zhang et al. 2008!

•  Spin-down power is injected into the PWN at !
  a time-dependent rate!

•  Assume power law input spectrum:!

  - Note: MHD models require γ=106 in upstream!
    wind – too high to explain radio emission;!
    there may be two electron populations!

•  Get associated synchrotron and IC emission !
  from electron population evolved nebula!
  - note X-ray synchrotron losses beyond cooling break!
  - joint fitting of synchrotron and IC spectra give B!
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Broadband Emission from PWNe!

•  Spin-down power is injected into the PWN at !
  a time-dependent rate!

•  Assume power law input spectrum:!

  - Note: MHD models require γ=106 in upstream!
    wind – too high to explain radio emission;!
    there may be two electron populations!€ 

Q(t) =Q0 (t)(Ee /Eb )
−α

Gelfand et al.  2009!
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•  Get associated synchrotron and IC emission !
  from electron population evolved nebula!
  - note X-ray synchrotron losses beyond cooling break!
  - joint fitting of synchrotron and IC spectra give B!
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The Fate of Particles in PWNe!

Slane et al. 2004!

•  Simple MHD flow fails to properly !
  account for distribution of energetic !
  particles inferred from X-rays!
  - synchrotron cooling much faster !
    than flow for energetic particles!
  - somehow, energetic particles are !
    transported to larger radii than !
    predicted !

•  Flow pattern appears to be more!
  complex than revealed in 1-D and !
  2-D hydro/MHD simulations!
  - more extensive modeling required,!
    including effects of diffusion and!
    geometry of magnetic field!
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The Fate of Particles in PWNe!

Slane et al. 2000!

•  Simple MHD flow fails to properly !
  account for distribution of energetic !
  particles inferred from X-rays!
  - synchrotron cooling much faster !
    than flow for energetic particles!
  - somehow, energetic particles are !
    transported to larger radii than !
    predicted !

•  Flow pattern appears to be more!
  complex than revealed in 1-D and !
  2-D hydro/MHD simulations!
  - more extensive modeling required,!
    including effects of diffusion and!
    geometry of magnetic field!

G21.5-0.9!
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I.   Injection Spectrum!

II.   Low Energy Particles!

III.  Late-Phase Evolution!
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What is the Spectrum at End of Life?!
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•  Vela X is the PWN produced by the Vela pulsar!
  - apparently the result of relic PWN being disturbed by asymmetric passage of the!
    SNR reverse shock!

•  Elongated “cocoon-like” hard X-ray structure extends southward of pulsar!
  - clearly identified by HESS as an extended VHE structure!
  - this is not the pulsar jet!

Evolution in an SNR: Vela X!

van der Swaluw, Downes, & Keegan 2003 
Blondin et al. 2001!

t = 10,000 yr t = 20,000 yr t = 30,000 yr t = 56,000 yr 
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Evolution in an SNR: Vela X!

•  XMM spectrum shows nonthermal and ejecta-rich thermal emission from cocoon!
  - reverse-shock crushed PWN and mixed in ejecta? R-T filaments providing radial B field?!

•  Broadband measurements appear consistent with synchrotron and I-C emission from!
  power law particle spectrum w/ two spectral breaks, or two populations!
  - density too low for pion-production to provide observed γ-ray flux!
  - magnetic field very low (5 µG)!

LaMassa et al. 2008!
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Understanding Vela X: XMM!

•  XMM large project (400 ks) will map Vela X to study ejecta and !
  nonthermal emission!

•  Radio and VHE spectrum for entire PWN suggests two distinct !
  electron populations !
  - radio-emitting population will generate IC emission in LAT band !
  - spectral features will identify distinct photon population and determine !
    cut-off energy for radio-emitting electrons!
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Understanding Vela X: Fermi!
de Jager et al. 2008!

•  XMM large project (400 ks) will map Vela X to study ejecta and !
  nonthermal emission!

•  Radio and VHE spectrum for entire PWN suggests two distinct !
  electron populations !
  - radio-emitting population will generate IC emission in LAT band !
  - spectral features will identify distinct photon population and determine !
    cut-off energy for radio-emitting electrons!
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Questions!

•  What causes the complex spectra of PWNe?!
  - it doesn’t all appear to be evolution; some structure may!
    be required at injection!

•  Is there a “relic” population of low-energy electrons?!
  - maybe not; does a small thermal component combined with !
    evolutionary losses explain the radio emission?!

•  Why does the X-ray spectral index vary so slowly with radius?!
  - is this just from flows in 3-D that the models haven’t accounted!
    for, or is it something more complex (e.g. re-acceleration)?!

•  What is the long-term fate of the particles in PWNe?!
  - when do the particles leave the PWN, and what is the spectrum!
    at this point?!


