Observational Constraints on the Energetic Particle Content of Pulsar Wind Nebulae

- I. Injection Spectrum
- II. Low Energy Particles
- III. Late-Phase Evolution

- Standard assumption is a power law input electron spectrum
 - this produces synchrotron break where synchrotron lifetime of particles equals age of PWN
- If injection spectrum has additional structure (e.g. lower energy break), this imprints itself onto the nebula spectrum
 - get PWN spectrum with multiple breaks

Broadband Observations of 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - PWN and torus observed in Spitzer/IRAC

Broadband Observations of 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - PWN and torus observed in Spitzer/IRAC
- Low-frequency break suggests possible break in injection spectrum
 - IR flux for entire nebula falls within the extrapolation of the X-ray spectrum
 - indicates single break just below IR
- Torus spectrum requires change in slope between IR and X-ray bands
 - challenges assumptions for single power law for injection spectrum

Fermi Studies of 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - PWN and torus observed in Spitzer/IRAC
- Low-frequency break suggests possible break in injection spectrum
 - IR flux for entire nebula falls within the extrapolation of the X-ray spectrum
 - indicates single break just below IR
- Torus spectrum requires change in slope between IR and X-ray bands
 - challenges assumptions for single power law for injection spectrum
- Fermi LAT band probes CMB IC emission from ~0.6 TeV electrons
 - this probes electrons from the unseen synchrotron region around E^{syn} = 0.4 eV where injection is particularly complex

Broadband Observations of G21.5-0.9

Chandra

Spitzer 5.8 μm

Broadband Observations of G21.5-0.9

- I. Injection Spectrum
- II. Low Energy Particles
- III. Late-Phase Evolution

$$\dot{E} = I\Omega\dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}$$

· Assume power law input spectrum:

$$Q(t) = Q_0(t)(E_e/E_b)^{-\alpha}$$

- Note: MHD models require $\gamma=10^6$ in upstream wind too high to explain radio emission; there may be two electron populations
- Get associated synchrotron and IC emission from electron population evolved nebula
 - note X-ray synchrotron losses beyond cooling break
 - joint fitting of synchrotron and IC spectra give B

 Spin-down power is injected into the PWN at a time-dependent rate

$$\dot{E} = I\Omega\dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}$$

Assume power law input spectrum:

$$Q(t) = Q_0(t)(E_e/E_b)^{-\alpha}$$

- Note: MHD models require $\gamma=10^6$ in upstream wind too high to explain radio emission; there may be two electron populations
- Get associated synchrotron and IC emission from electron population evolved nebula
 - note X-ray synchrotron losses beyond cooling break
 - joint fitting of synchrotron and IC spectra give B

$$\dot{E} = I\Omega\dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}$$

• Assume power law input spectrum:

$$Q(t) = Q_0(t)(E_e/E_b)^{-\alpha}$$

- Note: MHD models require $\gamma=10^6$ in upstream wind too high to explain radio emission; there may be two electron populations
- Get associated synchrotron and IC emission from electron population evolved nebula
 - note X-ray synchrotron losses beyond cooling break
 - joint fitting of synchrotron and IC spectra give B

$$\dot{E} = I\Omega\dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}$$

• Assume power law input spectrum:

$$Q(t) = Q_0(t)(E_e/E_b)^{-\alpha}$$

- Note: MHD models require $\gamma=10^6$ in upstream wind too high to explain radio emission; there may be two electron populations
- Get associated synchrotron and IC emission from electron population evolved nebula
 - note X-ray synchrotron losses beyond cooling break
 - joint fitting of synchrotron and IC spectra give B

The Fate of Particles in PWNe

- Simple MHD flow fails to properly account for distribution of energetic particles inferred from X-rays
 - synchrotron cooling much faster than flow for energetic particles
 - somehow, energetic particles are transported to larger radii than predicted
- Flow pattern appears to be more complex than revealed in 1-D and 2-D hydro/MHD simulations
 - more extensive modeling required, including effects of diffusion and geometry of magnetic field

The Fate of Particles in PWNe

- Simple MHD flow fails to properly account for distribution of energetic particles inferred from X-rays
 - synchrotron cooling much faster than flow for energetic particles
 - somehow, energetic particles are transported to larger radii than predicted
- Flow pattern appears to be more complex than revealed in 1-D and 2-D hydro/MHD simulations
 - more extensive modeling required, including effects of diffusion and geometry of magnetic field

- I. Injection Spectrum
- II. Low Energy Particles
- III. Late-Phase Evolution

What is the Spectrum at End of Life?

- Vela X is the PWN produced by the Vela pulsar
 - apparently the result of relic PWN being disturbed by asymmetric passage of the SNR reverse shock
- Elongated "cocoon-like" hard X-ray structure extends southward of pulsar
 - clearly identified by HESS as an extended VHE structure
 - this is not the pulsar jet

Evolution in an SNR: Vela X

- XMM spectrum shows nonthermal <u>and</u> ejecta-rich thermal emission from cocoon
 - reverse-shock crushed PWN and mixed in ejecta? R-T filaments providing radial B field?
- Broadband measurements appear consistent with synchrotron and I-C emission from power law particle spectrum w/ two spectral breaks, or two populations
 - density too low for pion-production to provide observed γ -ray flux
 - magnetic field very low (5 μ G)

Understanding Vela X: XMM

- XMM large project (400 ks) will map Vela X to study ejecta and nonthermal emission
- Radio and VHE spectrum for entire PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons

Understanding Vela X: Fermi

- XMM large project (400 ks) will map Vela X to study ejecta and nonthermal emission
- Radio and VHE spectrum for entire PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons

Questions

- What causes the complex spectra of PWNe?
 - it doesn't all appear to be evolution; some structure may be required at injection
- Is there a "relic" population of low-energy electrons?
 - maybe not; does a small thermal component combined with evolutionary losses explain the radio emission?
- Why does the X-ray spectral index vary so slowly with radius?
 - is this just from flows in 3-D that the models haven't accounted for, or is it something more complex (e.g. re-acceleration)?
- What is the long-term fate of the particles in PWNe?
 - when do the particles leave the PWN, and what is the spectrum at this point?