Modeling nonlinear shocks: a Monte Carlo method

Andrey Vladimirov, Don Ellison, Andrei Bykov*

* Names ordered according to the distance from the projector screen

- Simulate full-scale nonlinear shocks (efficient acceleration, strong B-fields, high E_{max}), aiming to model SNR shocks
- Eliminate some approximations of kinetic models (e.g., isotropy of f(p) → model injection, oblique and relativistic shocks, large gradients of B-field)
- Self-consistently include important processes (various possible MFA mechanisms, Fermi-II, precursor heating, multiple particle species)

Model

- Monte Carlo simulation was originally developed by D. Ellison and others (M. Baring, D. Eichler, F. Jones and others)
- Shown to be in an excellent agreement with spacecraft observations (Earth's bow shock, heliospheric shocks)
- Re-written for magnetic field amplification by Vladimirov, Ellison and Bykov; also adopted for parallel processing.

Basic assumptions

- Steady state
- Statistical description of particle transport
- Analytical models for turbulence generation
- Acceleration limited by size, time or E_{max}

Our approximations: magnetic fields

- We do not follow the evolution of B-field structure, B(r,t)
- Instead, we evolve the spectrum of stochastic Bfields (Fourier transform averaged over a small volume), W(x, k)
- Justification: size of system ~ $L_D = (c/u) \cdot \lambda(p_{max})$, largest turbulent harmonics ~ $\lambda(p_{max}) << L_D$
- Saves computational time at the cost of relying on analytical models for magnetic turbulence amplification.

Our approximations: particle transport

- In the absence of B(r,t), a statistical description is employed, based on W(x,k)
- **Justification**: length scale of parameter variability L_D , mean free path $\lambda = (u/c) L_D \ll L_D OK$
- Monte Carlo particle transport accurately describes anisotropic f(p) (i.e., goes beyond the diffusion approximation).
- Slower than the kinetic approach, but makes it possible to:
 - Model thermal leakage injection, given a prescription for low energy particle transport;
 - Simulate relativistic shocks;
 - Include uniform B₀ to study oblique shocks;
 - Deal with large gradients of W(x,k)

Our method: iterative procedure

Takes computational time

But! Conserves paper, pencils and mental energy: easy to implement any mean free path prescription, any MFA model, multiple ion species, synchrotron losses for electrons, Fermi-II, particle escape/age limit, shock transparency, etc.

Magnetic field amplification (MFA)

- Assume a phenomenological model for evolution of turbulence spectrum W(x, k)
- This model describes $\Delta B >> B_0$, but must also agree with the theoretical models for $\Delta B << B_0$ regime

Mechanisms of MFA

Plasma instabilities in presence of accelerated particles: resonant and non-resonant.

Determined by the Monte Carlo simulation $\gamma_{\rm res}(k) = v_A \frac{dP_{\rm cr}(x, p_{\rm res})}{dx} \frac{dp_{\rm res}}{dk} \frac{1}{W(x, k)}$ $= \frac{eB_0}{ck}$ Resonant CR streaming instability where $p_{\rm res}$ $\gamma_{\rm nr}(k) = v_A k_A \sqrt{\frac{k_c}{k}} - 1$, Nonresonant Bell's instability where $k_c = \frac{B_0 j_d}{c \rho v_A}$, and $\frac{1}{r_{g1}} < k < k_c$

Mechanisms of MFA

- Other instabilities are currently considered in literature
- Long-wavelength nonresonant kinetic instability (Bykov et al. 2009 – ask me for a copy)
- Magnetosonic instability (Malkov 2009)
 Firehose instability (Blandford, Funk, ...)

Mean free path (MFP)

- Monte Carlo uses MFPs of particles in MHD turbulence to describe transport on scales larger than MFP
- MFP determines

 efficiency of particle
 acceleration and,
 subsequently, of MFA

The lowest energy particles get trapped in the large-scale turbulent structures and experience convective diffusion i or intermediate energy particles, either resonant scattering, or Bohm diffusion may be assumed

How Monte Carlo transport works

- Thermal particles are propagated assuming elastic momentum scattering in a small fraction of MFP λ(x, p)
- If a thermal particle crosses the shock against the flow and returns, it gains energy – thermal leakage injection
- Particles are traced in this way from thermal to the highest energies until they escape

How Monte Carlo transport works

- Tracing each particle allows the model to calculate all the necessary moments of the distribution function
- These data are then used as the input for the MFA model
- Output of MFA model plus superthermal particle distribution are used to iterate the solution to satisfy fundamental conservation laws

Achieving self-consistency

Pressure (momentum flux) of Alfven waves hst. $P_{IK} = \text{const},$ $P+\varepsilon)u+F_{u}=\text{const},$ -u(x)(x,k)dkEnergy flux of Alfven waves

Generated MHD waves contribute to momentum and energy balance in the nonlinear shock structure;

- Dissipation of waves in the precursor heats the thermal plasma and affects particle injection.
- These effects depend on turbulence properties.

Iterative procedure in action

Output of the model

- Fraction of energy in superthermal particles
- Total plasma compression and heating
- Spectra of escaping CR particles
- Spectra of MHD turbulence, values of amplified effective B-fields
- Maximum particle energy for given shock parameters
- Photon emission can be calculated

Published results

- Vladimirov, Ellison & Bykov, 2006, ApJ : introduced the MC simulation with MFA
- Ellison & Vladimirov, 2008, ApJL: analyzed the effect of MFA on Emax
- V, B & E, 2008, ApJ: studied the importance of precursor heating and its connection to particle injection

V, B & E, 2009, ApJL: self-consistent solutions with Bell's instability

Results: nonlinear shocks with MFA

- VEB 2006
- Shown: self-consistent structure of shocks with resonant MFA.
- Principal result: MFA in NL-DSA is possible to the high levels observed in some SNRs
- Shocks remain efficient particle accelerators in the presence of MFA

Results: nonlinear shocks with MFA

Results: maximum energy of accelerated particles

EV 2008

 Maximal particle energy, *E*_{max}, does <u>not</u> scale as *the amplified field*, *B*_{eff}

 Important for the interpretation of some observations

Results: turbulence dissipation and particle injection

VBE 2008

Dissipation of turbulence efficiently heats the precursor plasma, boosts particle injection, but does not affect shock compression
Dissipation effects may be observable in the X-ray range
High energy particles

not sensitive to injection

Results: nonresonant instability and precursor stratification

- Submitted to APJL (I'll be happy to send or print you a copy)
- Spectral energy transfer (cascading) is uncertain
- The nonresonant streaming instability may lead to peculiar turbulence spectra with discrete peaks
 - Observable features are discussed

Results: nonresonant instability and precursor stratification

This is not the end!

- Kinetic and MC models have a long way to go until a realistic model of a SNR shock is obtained with few parameters
- Major uncertainties are: mechanisms of MFA, structure of the self-generated MHD turbulence, particle transport in such turbulence, plasma physics of particle injection.

PIC simulations may shed light on the particle injection process.

- Is it possible to describe the scattering rate of a thermal / low energy particle as a function of its energy in the self-generated fields?
- Study parameter dependence (on temperature, obliquity of the seed magnetic field, etc.) of the injection rate?
- Collisionless dissipation of turbulence is crucial for determining the precursor heating PIC area.

- MHD simulations of wave instabilities may be an efficient way to address problems like instability saturation, spectral energy transfer (e.g., Bell 2004, Zirakashvili, Ptuskin & Voelk 2008).
- Back-reaction of particles to the amplified B-field may be important (e.g., Lucek & Bell 2000).
- Particle transport in simulated stochastic fields can be studied numerically (e.g., Bell 2005)

Similar work* in progress

- Kinetic theory (e.g., Berezhko & Voelk, Blasi et al., Jones & Kang)
- Alternative models (e.g., Diamond & Malkov)
- Various other groups and individuals employing semi-analytical and combined methods
- * nonlinear models with realistic dynamic range in particle energies

Summary

- MC model yields nonlinear shock structure with efficient MFA in a wide range of possible NL instability regimes.
- MFA increases E_{max} , but less than it increases B_{eff}
- Moderate dissipation of the generated turbulence does not significantly change the high energy particle spectra, but may be observable
- NL effects may lead to peculiar turbulence spectra
- Improvement of plasma physics description is essential; it requires PIC, MHD simulations and analytical research.