Some Applications of Coherent X-rays from a 3rd Generation Synchrotron Source

Tetsuya Ishikawa RIKEN Harima Institute

8/5/2010 KITP, UCSB, Santa Barbara, CA, USA

Collaborators

RIKEN

Kenji Tamasaku, Yoshihito Tanaka, Yoshiki Kohmura, Kei Sawada, Hideo Kitamura, Masaki Yamamoto, Tsumoru Shintake, Cyonyang Song, Alfred Baron, Masaki Takata, Noritaka Kumagai, Hiroaki Maeshima

JASRI

Makina Yabashi, Hiroshi Yamazaki, Haruhiko Ohashi, Shunji Goto

Osaka University

Kazuto Yamauchi, Yukio Takahashi

Hokkaido University

Yoshinori Nishino

UCLA

John Miao

Plan

- Introduction
- Coherence Measurement
 - X-Ray HBT interferometer
 - X-Ray Michelson Interferometer & X-ray FT spectroscopy
- Non Linear X-Ray Optics
 - Parametric Down Conversion
- X-Ray Mirror Development using 1000 m BL
 - Flat Mirror
 - KB Focusing
 - Sub 10 nm Focusing
- Present Status of Japan X-Ray Free Electron Laser Project
- Summary

New Lights Always Create New Science & Technology

Coherence: One of the most significant feature of 3rd generation SR sources

Applications of Coherent X-Rays: 2004 Jpn SR Society Meeting

Coherent
DiffractionHolographyPhoton Correlation
SpectroscopyPropagation-based
ImagingNano-beam
MicrographyNon-Linear Optics

What astonished us at that time...

CDI of E-Coli J. Miao et al: PNAS, **100**, 110 (2003).

X-Ray Speckles from a Be window

Coherence Measurement Interferometer

Thomas Young, 1807

Hanbury-Brown and Twiss, 1956

Intensity Interferometer

Pro

Con

Optics could be unstable
Optics could be simple
Photon Statutistic Information

Need High Brilliance Light

Need Monochromatization

Short History

Amplitude Interference using Double Slits 1807 Young 1956 HBT Intensity Interference using Hg lamp(Nature) Shuryak Proposal of SR diagonostic application (JETP) 1974 Estimation for 3rd generation SR(PRL) 1992 Ikonen 1997 Kikuta *et al*. First HX data (*E*=14.4 keV, *R*~0.6 %) (JSR) 1999 Miyahara *et al.* First SX data(*E*=70 eV, *R*~1 %) (PRA) Gluskin et al. HX data from APS (E=14.4 keV, R~1 %) (JSR) 2000

1998 ~ 2000 Coherent X-ray Optics Beamlines at SPring-8 BL29XU and 19LXU

Source

Temporal & Spatial Coherence

Chaotic field

Principle

Mode number: $M = M_X M_Y M_T$ Smaller M \square Larger Inten

Smaller *M* Larger Intensity Fluctuation Larger Coincidence Count Rate

$$\left\langle I_{A}I_{B}\right\rangle = \left\langle I_{A}\right\rangle \left\langle I_{B}\right\rangle \left(1 + 1/M\right)$$

$$R \equiv \frac{\left\langle I_{A}I_{B}\right\rangle}{\left\langle I_{A}\right\rangle \left\langle I_{B}\right\rangle} - 1 = \frac{1}{M}$$

Longitudinal Mode Number

Need High Resolution Monochromator (HRM)

HRM Development (up to 2000)

Energy Resolutions at *E*=14.4 keV

G. Faigel et al. 1987; T. Ishikawa et al. 1992; T. Toellner et al. 1992, 1997; A.I. Chumakov et al. 1996, 2000

Angular Collimation with Asymmetric Reflection

Successive asymmetric reflections in (+, -) geometry

Kohra & Kikuta, Acta A, 1968; Matsushita, Kikuta, & Kohra, JPSJ, 1971

Sub-meV Resolution HRM

Dual co-axial goniometer #2

Dual co-axial goniometer #1 (12.2 nrad/pls)

 \circ

0

Sub-meV Resolution Monochromator

M. Yabashi, K. Tamasaku, S. Kikuta, & T. Ishikawa: RSI 72, 4080 (2001).

High Brilliant Light Source: 27m ID

In-vacuum undulator Total magnet length = 25 m λ_U = 32 mm N = 780 $K \le 1.76$ E_{1st} : 7.2 ~ 18.7 keV Total Power ≤ 35 kW $\delta \le 0.7$

Kitamura et al.: NIM A **467-468**, 110 (2001).

Peak Brilliance

Optical Set-Up

Kitamura et al., NIM A, 2001

Yabashi et al., SPIE 1999; Tamasaku et al., SPIE 2002,

Result

Horizontal slit width = $30 \ \mu m$

Coherence length: $\sigma_v = 66.3 \pm 2.0 \ \mu m$ at $L = 66.7 \ m$

Electron Beam Diagnostics

Van Cittert-Zernike's theorem (Gaussian approximation): $\sigma_{Y} = \lambda L/2\pi s_{Y}$ Vertical source size: $s_{Y} = 13.8 \pm 0.4 \mu m$ (Angular source size: 0.2 µrad) *M. Yabashi, K. Tamasaku, and T. Ishikawa, Phys. Rev. Lett.* 87, 140801 (2001)

Vertical emittance: $\varepsilon_{\rm Y} = s_{\rm Y}^2 / \beta_{\rm Y}$

SP8 Standard 4.5 m Undulator

Measured at 1st hutch (~50 m from source) of 1-km BL

Low Emittance Operation

$\varepsilon = 6 \text{ nm.rad}$

 $σ_y = 161.3 \pm 5.0 \mu m, s_y = 4.6 \pm 0.14 \mu m$ $ε_y = 3.6 \pm 0.2 \text{ pm.rad}, \kappa = 0.12 \%$

 $\varepsilon = 3$ nm.rad

M. Yabashi, K. Tamasaku, & T. Ishikawa: PRA

Pulse Width

σ_t is tunable through ΔE

Result

M. Yabashi, K. Tamasaku, & T. Ishikawa: Phys. Rev. Lett. 88, 244801 (2002).

Intensity correlation technique is useful for amplitude interferometers

•Flexible configuration *e.g.* use of different netplanes

But, serious drawback:nano-radian/angstrome stability

Intensity correlation technique: a novel method to measure visibility without stabilization

$$I(t) = \langle I \rangle (1 + V \cos \phi(t)) \longrightarrow \langle I^2 \rangle = \langle I \rangle^2 (1 + V^2)$$

If we measure the intensity correlation, $< l^2 >$, we can determine the visibility, *V*.

Skew symmetric LLL interferometer

K.Tamasaku et al., PRL88, 044801 (2002).

Intensity correlation: $P_{12}=1+V^2$

X-ray Michelson interferometer & Fourier transform x-ray spectroscopy

K.Tamasaku *et al.,* APL**83**, 2994 (2003). K.Tamasaku *et al.*, JSR**12**, 696 (2005).

X-Ray Resonance in Crystal Cavities: Realization of Fabry-Perot Resonator for Hard X Rays

S.-L. Chang,^{1,2,*} Yu. P. Stetsko,² M.-T. Tang,² Y.-R. Lee,¹ W.-H. Sun,¹ M. Yabashi,³ and T. Ishikawa^{3,4}

¹Department of Physics, National Tsing Hua University (NTHU), Hsinchu, Taiwan 300, Republic of China

²National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan 300, Republic of China

³SPring-8/JASRI, Mikazuki, Hyogo 679-5198, Japan

⁴SPring-8/RIKEN, Mikazuki, Hyogo 679-5148, Japan

(Received 9 August 2004; published 5 May 2005)

X-ray nonlinear optics – x-ray PDC

K.Tamasaku *et al.,* PRL**98**, 244801 (2007).

X-ray PDC (parametric the 2nd order non accessible with e. χ⁽²⁾ Signal The pump photon de two photons, the idle

X-ray PDC (parametric down-conversion): the 2nd order nonlinear optical process accessible with existing SR

The pump photon decays spontaneously into two photons, the idler and the signal.

Nonlinear

crystal

Pump

Basic questions

- ◆How x-ray PDC is observed?
- How to estimate $\chi^{(2)}$?
- •What factor determines $\chi^{(2)}$?

 $\chi^{\text{(2)}}$: nonlinear susceptibility

$X \rightarrow X + SX by diamond$ K.Tamasaku *et al.*, PRL**103**, 254801 (2009).

Rocking curve of nonlinear diffraction:

normalized intensity of the signal wave

RC is not simple, but shows an interference with the background Raman process.

Resonance effect & Fano interference

K.Tamasaku et al., PRL103, 254801 (2009).

1000 m Beamline, BL29XUL

Great Possibility of the Coherent X-Rays

First Beam on June 2nd, 2000

from SPring-8 Homepage

Mirror Development & Application

Mechanism of EEM (Elastic Emission Machining)

An ultraprecision machining process utilizing chemical reaction between surfaces of work and fine powders

Flow of ultrapure water

Work

Chemical reactions are induced between only top-site atoms of the work and fine powders

Automatic smoothing mechanism

Features of Plasma CVM

1. <u>A chemical process utilizing reactive species</u> generated in the atmospheric pressure plasma

Radical density is very high. High removal rate processing without any crystallographic damage

Material	Removal rate(µm/min)
Fused silica	170
Silicon	94
Molybdenum	36
Tungsten	32
Silicon carbide	6.4
Diamond	2.5

Experimental Setup

Performances of Plasma CVM Figuring

An example of the figuring in spatial-wavelength range of submillimeter by computer controlled EEM (Elastic Emission Machining) process.

Intensity distribution of reflected X-ray beam

Incident angle : 1.2mrad / Mirror length: 100mm / Mirror material : Silicon single crystal (001)

Forward/Backward Simulations

Wave-Optical Calculation

Inverse Problem

image

surface profile

Aspherical Mirror: Nano Focusing

Observed and calculated focal profiles

(a) Measured and (b) calculated cross-sectional intensity profiles around the focal spot

Nearly Diffraction-Limited Focusing!

Breaking the 10 nm barrier in hard-X-ray focusing

Hidekazu Mimura¹*, Soichiro Handa¹, Takashi Kimura¹, Hirokatsu Yumoto², Daisuke Yamakawa¹, Hikaru Yokoyama¹, Satoshi Matsuyama¹, Kouji Inagaki¹, Kazuya Yamamura³, Yasuhisa Sano¹, Kenji Tamasaku⁴, Yoshinori Nishino⁴, Makina Yabashi⁴, Tetsuya Ishikawa⁴ and Kazuto Yamauchi^{1,3}

Three-Dimensional Visualization of a Human Chromosome Using Coherent X-Ray Diffraction

Yoshinori Nishino,^{1,*} Yukio Takahashi,² Naoko Imamoto,³ Tetsuya Ishikawa,¹ and Kazuhiro Maeshima³

¹RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
 ²Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
 ³Cellular Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
 (Received 10 July 2008; revised manuscript received 18 November 2008; published 5 January 2009)

CDI at the BL29XU started in collaboration with John Miao in 2000. Many 3D observations because of the high beam stability.

NANO LETTERS

pubs.acs.org/NanoLett

Three-Dimensional Electron Density Mapping of Shape-Controlled Nanoparticle by Focused Hard X-ray Diffraction Microscopy

Yukio Takahashi,*^{,†} Nobuyuki Zettsu,[†] Yoshinori Nishino,[§] Ryosuke Tsutsumi,^{II} Eiichiro Matsubara,[⊥] Tetsuya Ishikawa,[#] and Kazuto Yamauchi^{†,II}

[†]Frontier Research Base for Global Young Researchers, Frontier Research Center, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan, [†]Research Center for Ultra-precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan, [§]Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan, ^{II}Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan, [⊥]Department of Materials Science and Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan, and [#]RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

Present Status of Japan X-Ray Free Electron Laser

Prototype

SCSS

Operation

As of May 30, 2010

X-Ray Free Electron

Laser Facility

FY 2006-FY 2010

in Construction

SCSS

Concept

- Compact SASE source with lower energy linac with similar light source performance to bigger sources
- Co-locate with a 3rd generation SR source to be used synergistically

- Use shorter period in-vacuum undulator to reduce the linac energy to lase at <0.1 nm .
- Use high-gradient accelerator tubes (C-Band) to reduce the linac length.

700 m total length, ~400 M\$ construction cost, 5 year period

Road Map

Building Construction

2007/3/23

2008/3/12

2009/3/24

2007/7/27

2008/10/28

2010/5/30

Latest View (1)

②Klystron Gallery

①Electron Gun & Injector

Latest View (2)

XFEL 実験研究棟	XFEL 光源棟	XFEL 加速器棟
(共同実験棟・共同研究棟)	(光源収納部建屋)	(マシン収納部建屋)

③C-Band Accelerator

8 GeV X-Ray Free Electron Laser Facility at SPring-8 Total Facility Length ~ 0.7 km

Unique Features XFEL and SR X-ray beams on the same sample Short & Low emittance e-beam injection to SP8 from XFEL Linac

Synergistic Use of Two RIKEN-Hosted Key Technologies of National Importance

福井県

Summary

- X-ray coherence is one of the significant features of the 3rd generation SR sources, and will be similar in the coming SASE-XFEL sources.
- Some applications of coherent x-rays at SPring-8 were shown: Intensity interferometry, Mirror development for nm focusing, and others.
- Present status of the Japan X-Ray Free Electron Laser Project was introduced.
- We believe XFEL is another great example that a new light creates new science and technologies.