Nanoplasma dynamics in FEL-driven atomic clusters

Ulf Saalmann

Max Planck Institute for the Physics of Complex Systems · Dresden

Pierfrancesco Di Cintio · Christian Gnodtke · Ionuţ Georgescu · Jan M Rost (now at UC Irvine)

clusters in X-ray pulses: "frustration" charge migration: outer & inner tamper plasma equilibration: collisional auto-ionization

outline

clusters in X-ray pulses: "frustration"

charge migration: outer & inner tamper

plasma equilibration: collisional auto-ionization

interaction of X-fel pulses with clusters

• **local** interaction: – inner-shell photo-ionization

- Auger decays

intra-atomic processes

cluster effect?

secondary processes: – electron-impact ionization

- field ionization

• nanoplasma dynamics: – equilibration

- screening

- emission

inter-atomic processes

cluster effect!

case study: argon cluster @ X-FEL pulse (350 eV, 80 fs)

[Saalmann & Rost, PRL 89 (2002) 143401]

delocalization of valence states

atomic photo-ionization

$$\Gamma \propto |\Psi(r_{\omega})|^2$$
 with $r_{\omega} = \frac{1}{\sqrt{\omega}} = 0.25 \, a_0$

values close to nucleus reduced

auto-ionization (Auger)

$$\Gamma \propto \left| \left\langle \Phi_{12}(\vec{x}\vec{y}) \left| \frac{1}{|\vec{x} - \vec{y}|} \right| \Phi_{0E}(\vec{x}\vec{y}) \right\rangle \right|^2$$

electron-hole overlap reduced

clusters in X-ray laser pulses

cluster-charge effect vs. delocalization effect

[Saalmann & Rost, PRL <u>89</u> (2002) 143401]

pulse-length dependence for LCLS pulses

neon@2keV

reduction in clusters for: - "long" pulse

- high intensities

outline

clusters in X-ray pulses: "frustration"

charge migration: outer & inner tamper

plasma equilibration: collisional auto-ionization

plasma formation (for neon clusters and 12 keV X-rays)

plasma formation (for neon clusters and 12 keV X-rays)

large radial fields

Bethe rule for atomic (over-barrier) ionization:

$$F_Q \geq \frac{(E_{\rm ip})^2}{4Q}$$

neon: $F_Q \approx \frac{Q}{7}$

medium-size neon cluster in strong X-ray pulse

charging of surface atoms $\Rightarrow \text{consequences for expansion?}$ screening of cluster center \Rightarrow

quantitative estimate by mean displacement at pulse peak

$$\Delta r = \frac{1}{N} \sum_{i=1}^{N} |\vec{r}_i(-\infty) - \vec{r}_i(0)|$$

N atoms with positions $\vec{r}_i(t)$

reduced calculation:

photo-ionization, Auger decays, electron-impact

full calculation:

..., field-ionization due to internal fields

[Gnodtke, Saalmann & Rost, PRA <u>79</u> (2009) R 041201]

mean displacement: pulse-length dependence

mean displacement
$$\Delta r = \frac{1}{N} \sum_{i=1}^{N} |\vec{r}_i(-\infty) - \vec{r}_i(0)|$$

fixed photon number per pulse: 10¹²

full cluster

"half" cluster

→ helium droplet as sacrificial layer

H₂O droplet [Hau-Riege et al. (2007)]

Helium as a tamper

Helium ...

- ... is a weak scatterer (only 2 electrons)
- ... is transparent to Xray pulses (wouldn't work without field ionization)
 - immediate response
 - as active as necessary

("wächst mit seinen Aufgaben")

... can pick up proteins

Gert von Helden:

(FHI Berlin)

"Mass-selected protein ions can be stored in an ion trap to be picked up by liquid helium droplets. Detec-

tion is performed by direct current measurement."

... provides an ultra-cold environment

pristine vs. embedded clusters

Ne₁₅₀₀ versus Ne₁₅₀₀@He₁₅₀₀₀ pulse-length dependence

pristine vs. embedded clusters

pulse-length dependence for Ne₁₅₀₀ versus Ne₁₅₀₀@He₁₅₀₀₀

Pulse-length dependence for Ne₁₅₀₀ versus Ne₁₅₀₀@He₁₅₀₀₀

R-factor =
$$\sum_{ij}^{\text{pixel}} \left| \sqrt{I_{ij}^{\text{geal}}} - \sqrt{I_{ij}^{\text{ideal}}} \right| / \sum_{ij}^{\text{pixel}} \sqrt{I_{ij}^{\text{ideal}}}$$

0.4

embedding

 \rightarrow better images

 \rightarrow longer pulse

 $0.5 \times 0.2 \times 0.2 \times 0.2 \times 0.2 \times 0.2 \times 0.2 \times 0.2$

pulse duration T [fs]

bio-molecules as heterogenous systems

neon ↔ helium: different cross sections

electron migration/charge transfer

bio-molecules: carbon, nitrogen, oxygen, sulfur + hydrogen

... and the tamper is on board!

 \rightarrow model systems: CH₄ (methane) clusters

carbon ↔ hydrogen: **different cross sections**

intra-molecular charge transfer

 $(CH_4)_n$ measurements by Ditmire et al. at LCLS: almost no carbon ions

ultra-fast neutralization

(CH₄)₂₉₇ @ 1 keV, 10 fs (available at LCLS/Stanford, used by Ditmire et al.)

overall charge within the "carbon core"

core is almost neutralized on a femtosecond time scale?

ultra-fast neutralization

(CH₄)₂₉₇ @ 1 keV, 10 fs (available at LCLS/Stanford, used by Ditmire et al.)

protons per CH₄ molecule within the "carbon core"

proton ejection on a femtosecond time scale!

inverse charge migration \rightarrow inner tamper!

outline

clusters in X-ray pulses: "frustration" charge migration: outer & inner tamper

plasma equilibration: collisional auto-ionization

xenon clusters at FLASH with 90 eV

[Bostedt, Saalmann et al. New J. Phys. 12 (2010) 083004]

 $E = \hbar\omega - E_{\rm bind} \approx 20 \, {\rm eV}$ 4d shell xenon: $E_{\rm bind} \approx 70 \, {\rm eV}$

(large cross section due to xenon's giant resonance)

- high-energetic tails
- increase with intensity mechanism?

xenon clusters at FLASH with 90 eV

• laser plasma heating? \rightarrow no

- inverse bremsstrahlung decreases strongly with laser frequency ω
- experiments with $\hbar\omega$ =40 eV showed weaker absorption than those with $\hbar\omega$ =12 eV

cluster potential? → no

- deeper cluster potentials (in particular for higher intensities)

• multi-photon processes ? \rightarrow no

- low cross sections for direct multi-photon processes
- low probability for absorption by trapped electrons

 \rightarrow What else?

simple multi-electron model

placing N electrons in the potential of a homogenous ionic charge distribution

$$V(r) = \begin{cases} -\frac{Q}{R} \left[\frac{3}{2} - \frac{(r/R)^2}{2} \right] & \text{for } r \leq R \text{ harmonic with depth } Q/R \\ -\frac{Q}{r} & \text{for } R \leq r \text{ Coulombic with charge } Q \end{cases}$$

"activation" of electrons according to Gaussian pulses

$$I(t) = I_0 \exp \left(-(t/T)^2\right) \rightarrow n(t) = (N/2) \left(1 + \operatorname{erf}(t/T)\right)$$

propagation of classical equations of motion

simple multi-electron model

- neglect complicated intra-atomic dynamics, just "activate" electrons with 20 eV excess energy
- account exactly for multi-electron dynamics in the cluster (classical molecular dynamics) and the final "ejection"

parameters

- R cluster radius N number of activated electrons \rightarrow electron density ϱ \rightarrow pulse duration
- E[⋆] excess energy

simple multi-electron model

multi-electron dynamics

 $R=31\,\text{Å}~(\rightarrow \text{Xe}_{2000})$ $n=10^4,~3\times 10^3,~10^3$ electrons Gaussian "pulse" $T=10\,\text{fs}$ (charge states for atoms are known from FEL experiments [Richter et al.])

high-energy tails!

time-resolved dynamics

collisional auto-ionization

[Bostedt, Saalmann et al. New J. Phys. 12 (2010) 083004]

- energy exchange in e⁻-e⁻ collisions
 - typical e⁻-e⁻ distances $\frac{1}{-} \propto \varrho^{1/2}$

summary

 clusters in X-ray pulses: "frustration" cluster charge, delocalization of valence states

 charge migration: outer & inner tamper ultrafast electron migration, proton emission

 plasma equilibration: collisional auto-ionization fast electrons in FLASH experiments by Bostedt, Möller et al.

