

Wilfried Wurth Physics Department and Centre for Free-Electron Laser Science University of Hamburg

Applications of time-resolved spectroscopy at FLASH

Collaborators

T. Beeck

- M. Beye
- M. Deppe
- A. Föhlisch (now at HZB)
- S. Gieschen
- U. Haßlinger
- F. Hennies
- J. T. Hoeft

M. Martins

- M. Nagasono
- H. Meyer
- A. Pietzsch
- W. F.Schlotter (now at LCLS)
- F. Sorgenfrei
- E. Suljoti
- S. Vijayalakshmi
- M. Wellhöfer

Priority program FSP 301-FLASH

The FLASH team

S. Schreiber, J. Feldhaus, S. Düsterer, H. Redlin, M. Berglund, N. Stojanovic, N.Guerassimova, R. Treusch, V. Rybnikov

Markus Drescher UHH

M. Wolf, FHI Berlin, A. Nilsson Stanford

TaS₂ University Kiel S. Hellmann, T. Rohwer, C. Sohrt, M. Kalläne, M. Marczynski-Bühlow, M. Bauer, L. Kipp, K. Rossnagel

Großgeräte der physikalischen Grundlagenforschung

Some Questions in Soft X-ray Materials Science at FEL's

Can we understand and control strongly correlated electron systems ?

How fast can we switch magnetisation ?

Ideally we would like to follow the **position of the atoms** <u>and</u>

the **evolution of the electronic states** at any given point in time, i.e. map out multi-dimensional energy surfaces and see how complex systems evolve on these surfaces

© Martin Wolf

300 µm

© Anders Nilsson

Surfaces

Liquids

© Yves Acremann

(Neglecting spin)

UH

пг

Reproduced from Petek et al., Prog. Surf. Sci. 56, 239 (1997).

Soft X-ray Materials Science (SXR) at LCLS (since May 2010)

2.3 nm < λ < 0.6 nm

M. Wellhöfer, M. Martins, and W. Wurth, A. Sorokin and M. Richter Performance of the monochromator beamline at FLASH J. Opt. A: Pure Appl. Opt. 9 (2007) 749 - 756

Großgeräte der physikalischen Grundlagenforschung

An atomic view on the dynamics of charge order in TaS₂ from time-resolved core-level photoemission

Snapshots of electronic structure relaxation in highly photoexcited Si taken with time-resolved x-ray emission spectroscopy

Optical pumping - "heating the electrons"?

UH

Charge Ordered State: 13 atom cluster "Star of David"

J. Wiebe, UniHH

L. Perfetti et al. PRL **97**, 067402 (2006)

Ta 4f photoemission – a probe for charge order in TaS₂

Equilibrium dynamics

Charge state dynamics after photoexcitation

UH

ñ'n

S. Hellmann, K. Rossnagel et al., cond-mat arXiv:1004.4790v1

- Transient decoupling of CDW and lattice distortion
- Same time scale as Mott gap recovery
- Fast formation of domain walls (~ 1ps)

X-ray Emission Spectroscopy

> time-resolved

UH

Dynamics of highly photoexcited silicon

FLASH:

117eV Photons
30 bunches@250kHz
every 200ms
around 40µJ per pulse
30fs pulse length
attenuated
~80mJ/cm²

Facility's Ti: Sa LASER: •400nm •same time structure •260mJ/cm² on sample •120fs pulse length •10²²/cm³ excitation density

Evolution of electronic structure after strong photoexcitation

M. Beye et al., PNAS published online August 30, 2010, doi:10.1073/pnas.1006499107

Conclusion: Liquid-liquid transition in Si

XUV-pump Optical-probe

XUV induced transient reflectivity change in GaAs

FLASH: 39.5 eV < 25fs, <16µJ/pulse 30 pulses/macrobunch @ 500 kHz macrobunch rep- rate 5 Hz

Optical Laser: 800 nm or 400 nm, ~ 120fs, < 10 nJ, 60 pulses/macrobunch @ 1MHz

C. Gahl et al. Nature Photonics 2, 165 (2008) T. Maltezopoulos et al., NJP 10 (2008) 033026

Quasi-instantaneous drop in optical reflectivity !

Molecular wave packet dynamics - N₂

Hot electron dynamics in Si

See also R. Mitzner et al. Optics Express 16, 19909 (2008), PRA 80, 025402 (2009)

N₂ wave packet dynamics

Potential energy curves N_2 (Franceschi et al. J. Chem. Phys. (2007))

"Coherence peak" ??

F. Sorgenfrei et al. to be published

XUV induced charge carriers in Si Fluence dependence

M. Beye et al. submitted

Hot electron dynamics

M. Beye et al. submitted

- Fast creation of carriers through Auger decay (8fs) and inelastic e-e scattering
- Subsequent diffusion of hot carriers out of probing volume (probing depth ~20nm)
- Layer of charge carriers confined to surface
- extremely fast motion in high fields

Perspectives

Pump	IR or Optical	XUV-
Probe		Soft X-rays
IR or Optical	Dynamics of low energy excitations (e.g. carrier dynamics, nuclear wave packet evolution,)	Create well defined localized excited states in complex systems
XUV- Soft X- rays	Photo induced changes in electronic structure (e.g. photo switching, photo- and electrochemistry, magnetization dynamics,)	Nonlinear Processes (SHG, Resonant Raman,four-wave mixing)

shorter timescales are possible Sub - femtosecond pump - probe

Bright future for powerful short pulse soft x-ray sources !