1

# Density-matrix approach to core-level photoexcitation of metals

### Hikaru Kitamura

Department of Physics, Kyoto University, Japan

## Nonlinear transmission of VUV FEL pulse through Sn

H. Yoneda et al., Opt. Express 17, 23443 (2009)





Saturable absorption in VUV range

#### Simulation of elementary processes in highly core-excited metals



## **Total Hamiltonian**



$$\begin{cases} \delta_{k_1\sigma_1}^{\text{occ}} \equiv \begin{cases} 1 & \text{if state } (k_1,\sigma_1) \text{ is occupied in the ground state} \\ 0 & \text{otherwise} \end{cases} \\ V_{k_1k_2k_3k_4}^{\sigma_1\sigma_2} \equiv \int d\mathbf{r}_1 \int d\mathbf{r}_2 \psi_{k_1}^{\sigma_1*}(\mathbf{r}_1) \psi_{k_2}^{\sigma_1}(\mathbf{r}_1) \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \psi_{k_3}^{\sigma_2*}(\mathbf{r}_2) \psi_{k_4}^{\sigma_2}(\mathbf{r}_2) \\ \mathbf{p}_{k_1k_2}^{\sigma} \equiv \int d\mathbf{r} \psi_{k_1}^{\sigma*}(\mathbf{r}) \frac{\hbar}{i} \nabla \psi_{k_2}^{\sigma}(\mathbf{r}) \\ \mathbf{A}(t) = \frac{1}{2} \mathbf{A}_0 \exp(-i\omega_v t) + \operatorname{cc} \end{cases} \text{ we tor potential of the laser field} \end{cases}$$

## **Density matrix equation for electron dynamics**

 $\rho_{kk'\sigma} \equiv c_{k\sigma}^{\dagger} c_{k'\sigma} \quad \text{operator of density-fluctuation excitation}$  $\left\langle \rho_{kk'\sigma} \right\rangle : \text{one-particle density matrix} \quad \left\langle \cdots \right\rangle : \text{expectation value}$ 

$$i\hbar \frac{\partial}{\partial t} \left\langle \rho_{kk'\sigma}(t) \right\rangle = \left\langle \left[ c_{k\sigma}^{\dagger} c_{k'\sigma}, H(t) \right] \right\rangle \qquad \text{equation of motion}$$

 $f_{k\sigma}(t) \equiv \langle \rho_{kk\sigma}(t) \rangle$  diagonal element = population of *k*th MO

 $K_{kk_{3}k_{1}k_{2}}^{\sigma\sigma_{1}} \equiv \left\langle c_{k\sigma}^{\dagger}c_{k_{1}\sigma_{1}}^{\dagger}c_{k_{2}\sigma_{1}}c_{k_{3}\sigma} \right\rangle \quad \text{two-particle density matrix}$   $\equiv \left\langle \rho_{kk_{3}\sigma} \right\rangle \left\langle \rho_{k_{1}k_{2}\sigma_{1}} \right\rangle - \delta_{\sigma\sigma_{1}} \left\langle \rho_{k_{1}k_{3}\sigma} \right\rangle \left\langle \rho_{kk_{2}\sigma} \right\rangle + \delta K_{kk_{3}k_{1}k_{2}}^{\sigma\sigma_{1}} \right\rangle \quad \text{correlation}$  H-F

$$i\hbar \frac{\partial \delta K_{kk_3k_1k_2}^{\sigma\sigma_1}(t)}{\partial t} = \left[\tilde{\varepsilon}_{k_3\sigma}(t) + \tilde{\varepsilon}_{k_2\sigma_1}(t) - \tilde{\varepsilon}_{k_1\sigma_1}(t) - \tilde{\varepsilon}_{k\sigma}(t)\right] \delta K_{kk_3k_1k_2}^{\sigma\sigma_1}(t) + S_{kk_3k_1k_2}^{\sigma\sigma_1}(t)$$

## **Effects of electron-hole interaction**

$$\widetilde{\varepsilon}_{kk'\sigma}(t) \equiv \sum_{k_1k_2\sigma_1} \left( V_{kk'k_1k_2}^{\sigma\sigma_1} - \delta_{\sigma\sigma_1} V_{kk_2k_1k'}^{\sigma\sigma} \right) \left[ \left\langle \rho_{k_1k_2\sigma}(t) \right\rangle - \delta_{k_1k_2} \delta_{k_1\sigma_1}^{\text{occ}} \right] \quad \text{self-energy matrix} \\
V_{kk_3k_1k_2}^{\sigma\sigma_1} \approx \left[ \sum_{ij\mu} \sum_{i'j'\mu'} c_{k,i\mu}^{\sigma*} c_{k_3,j\mu}^{\sigma} c_{k_1,i'\mu'}^{\sigma^*} c_{k_2,j'\mu'}^{\sigma_1} \left( i\mu, j\mu | i'\mu', j'\mu' \right) , \text{ for } \left| \mathbf{R}_{\mu} - \mathbf{R}_{\mu'} \right| \leq R_{\text{nn}} \\
0, \text{ otherwise} \quad \text{cutoff at nearest-neighbor separation} \\
\rightarrow \text{ screening effect}$$

#### (1) renormalized energy level

$$\tilde{\varepsilon}_{k\sigma}(t) = \varepsilon_{k\sigma} + \tilde{\varepsilon}_{kk\sigma}(t)$$
shift

(2) renormalized transition energy  $k' \rightarrow k$ 

$$\hbar \tilde{\omega}_{kk'\sigma}^{\text{IVO}}(t) \equiv \tilde{\varepsilon}_{k\sigma}(t) - \tilde{\varepsilon}_{k'\sigma}(t) - \left( V_{k'k'kk}^{\sigma\sigma} - V_{k'kk'}^{\sigma\sigma} \right) \left[ f_{k'\sigma}(t) - f_{k\sigma}(t) \right]$$
(*e-h* attraction: *improved virtual orbital*)

(3) renormalized transition matrix in 'RPA+exchange'

$$\tilde{\mathbf{p}}_{kk'}^{\sigma}(\boldsymbol{\omega}) = \mathbf{p}_{kk'}^{\sigma} + \sum_{\substack{k_1k_2\sigma_1\\(\neq kk'\sigma)}} \left( V_{kk'k_2k_1}^{\sigma\sigma_1} - \delta_{\sigma\sigma_1} V_{kk_1k_2k'}^{\sigma\sigma_1} \right) \frac{\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}_{k_1k_2\sigma_1}^{\mathbf{IVO}} - i\Gamma}{(\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}_{k_1k_2\sigma_1}^{\mathbf{IVO}})^2 + \Gamma^2} \left[ f_{k_2\sigma_1}(t) - f_{k_1\sigma_1}(t) \right] \frac{\tilde{\mathbf{p}}_{k_1k_2}^{\sigma_1}(\boldsymbol{\omega})}{\hbar}$$

## Markov approximation Generalized rate equation

H.K., J. Phys. B 43, 115601 (2010)

$$\frac{\partial f_{k\sigma}(t)}{\partial t} = \frac{I_{\nu}}{\hbar \omega_{\nu}} \left[ \sum_{k'(\neq k)} \sigma_{kk'\sigma}(\omega_{\nu}) \left[ f_{k'\sigma}(t) - f_{k\sigma}(t) \right] - \sigma_{k\sigma}^{\text{bf}}(\omega_{\nu}) f_{k\sigma}(t) \right] \text{ radiative (bound-bound, bound-free)} \\ + \frac{\partial f_{k\sigma}(t)}{\partial t} \right]_{\text{coll}} + \frac{\partial f_{k\sigma}(t)}{\partial t} \right]_{\text{Auger}} \qquad \text{e-e collision (intravalence, Auger)} \\ I_{\nu} = \frac{\omega_{\nu}^{2} \left| \mathbf{A}_{0} \right|^{2}}{8\pi c} \quad \text{laser intensity} \end{cases}$$

Assumption: *Continuum population* = 0 (*Escape freely* without heating or recombination)

#### **Radiative cross-sections**

**Bound-bound** 

averaged over polarization

$$\sigma_{kk'\sigma}(\omega) = \frac{4\pi e^2}{c\hbar m_{\rm e}^2 \omega} \left[ \left\langle \left| \tilde{p}_{kk'}^{\sigma}(\omega) \right|^2 \right\rangle \frac{\Gamma}{\left(\omega - \tilde{\omega}_{kk'\sigma}^{\rm IVO}(t)\right)^2 + \Gamma^2} + \left\langle \left| \tilde{p}_{kk'}^{\sigma}(-\omega) \right|^2 \right\rangle \frac{\Gamma}{\left(\omega + \tilde{\omega}_{kk'\sigma}^{\rm IVO}(t)\right)^2 + \Gamma^2} \right]$$



#### **Bound-free**

$$\sigma_{k\sigma}^{\rm bf}(\omega) \approx \frac{e^2 \Omega}{2\pi c m_{\rm e}^2 \omega} \int d\mathbf{k}' \left\langle \left| p_{\mathbf{k}'k}^{\sigma} \right|^2 \right\rangle \delta\left( \frac{\hbar^2 k'^2}{2m_{\rm e}} - \tilde{\varepsilon}_{k\sigma}(t) - \hbar \omega \right) \qquad \underset{k\sigma}{\sim}$$

#### **Absorption coefficient**

$$\kappa_{abs}(\omega) \equiv n_{atom} \frac{1}{N} \left\{ \sum_{kk'\sigma} \sigma_{kk'\sigma}^{abs}(\omega) \left[ f_{k'\sigma}(t) - f_{k\sigma}(t) \right] + \sum_{k\sigma} \sigma_{k\sigma}^{bf}(\omega) f_{k\sigma}(t) \right\}$$
  
bulk atomic density cluster size

 $\mathbf{\Lambda}$ 

## **Boltzmann collision term**

## Auger decay



kσ

## NUMERICAL RESULTS FOR LITHIUM

## **Population kinetics**







- $\phi_i(\mathbf{r}): i = 1$ s, 2s, 2p  $\hbar \omega_v = 60 \text{ eV}$ 
  - $I_{\rm v} = 10^{14} \, {\rm W/cm^2}$

$$\Gamma = \Gamma' = 0.3 \text{ eV}$$

 $n = 4.75 \times 10^{22} \text{ cm}^{-3}$ 

## 11% of core electrons excited within 40 fs



Blue shift of the edge  $\rightarrow$  decrease of absorption



<u>Lowering</u> of core levels relative to the valence levels → <u>red shift</u> of the absorption edge

#### **Absorption coefficient vs time**



## **Nonlinear transmission**



14

### **OUTSTANDING ISSUES**

(1) Absorption edge shift --- blue shift or red shift ?

- Optical excitation of semiconductors
  - $\rightarrow$  band gap narrowing (red shift)
- Metallic lithium K-edge excitation
  - $\rightarrow$  blue shift
- (2) Shake-up effect
- (3) Pulse propagation (Maxwell eq.)

#### screening effect