Modeling the fluctuations of FEL radiation and their effect on the interaction with atoms

G. M. Nikolopoulos

Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Greece

Supported by the EC Marie Curie Research-Training Network EMALI

・ ロ ト ・ 雪 ト ・ 目 ト ・

Self-Amplified Spontaneous Emission

Summary of FEL mechanism

- oscillating e⁻ inside the undulator radiate spontaneously
- 2) radiation acts back on the e^- and bunches them
- bunched e⁻ radiate coherently and amplify the co-propagating EM wave (stimulated emission)
 - for λ determined by resonance (synchronism) condition

Amplification of noisy spontaneous radiation at the entrance of the undulator (seeding)

http://hasylab.desy.de

Radiation power ($N_e \sim 10^9$):

- \propto N_e for individual e⁻
- \propto $N_{
 m e}^2$ for e $^-$ confined in λ

• $I(z) = I_0 e^{z/L_g}$

Interaction with atoms

Properties of FEL Radiation

FEL pulses in the time and frequency domain

Spiky behavior, with the width of the main peaks determined by the coherence time T_c .

Ackermann et al., Nature 1, 336 (2007).

Interaction with atoms

Properties of FEL Radiation

Fluctuations in intensity

Probability distribution of the instantaneous intensity follows the negative exponential distribution

$$\mathsf{P}[\tilde{\mathit{I}}(t)] = e^{-\tilde{\mathit{I}}(t)}$$

•
$$\tilde{I}(t) = I(t)/\langle I(t) \rangle$$

• $\langle I(t) \rangle$: average intensity at a given time and position

Interaction with atoms

Properties of FEL Radiation

Fluctuations in energy

Prob. distribution of energy W, follows a Gamma distribution

$$P(ilde{W}) = rac{M^M}{\Gamma(M)} ilde{W}^{M-1} \exp(-M ilde{W})$$

A D > A P > A D > A D >

FEL Basic	Principles

Interaction with atoms

Simulation Algorithms Gallery of results

Two different lineshapes

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Electric field at a given time

Complex Gaussian random variable

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Lorentzian spectral linewidth: Typical random pulses

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Gaussian spectral linewidth: Typical random pulses

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Lorentzian spectral linewidth: Averaging over random pulses

FEL	Basic	Principles

Interaction with atoms

Simulation Algorithms Gallery of results

Gaussian spectral linewidth: Averaging over random pulses

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Lorentzian spectral linewidth: First-order correlation function

ロトメロトメミトメミト ミックへの

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Gaussian spectral linewidth: First-order correlation function

ロ と メ 母 と メ き と く き く つ ら

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Gaussian spectral linewidth: Fluctuations in energy

Prob. distribution of energy follows a Gamma distribution

$$W = \int_{T_1}^{T_u} I(t) dt; \quad P(\tilde{W}) = \frac{M^M}{\Gamma(M)} \tilde{W}^{M-1} \exp(-M\tilde{W})$$

- *W̃* = *W*/⟨*W*⟩ *M*: av. number of modes *M* ≈ (*T*_µ − *T*₁)/*T*_c
 - $(T_{\mathrm{u}} T_{\mathrm{l}}) \gg T_{\mathrm{c}}$ $P(ilde{W})
 ightarrow ext{Gaussian}$
 - $(T_u T_l) \ll T_c$ $P(\tilde{W}) \rightarrow$ neg. exponential

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Gaussian spectral linewidth: Fluctuations in energy

Prob. distribution of energy follows a Gamma distribution

$$W = \int_{T_1}^{T_u} I(t) dt; \quad P(\tilde{W}) = \frac{M^M}{\Gamma(M)} \tilde{W}^{M-1} \exp(-M\tilde{W})$$

- *W̃* = *W*/⟨*W*⟩ *M*: av. number of modes *M* ≈ (*T*₁₁ − *T*₁)/*T*_c
 - $(T_{\mathrm{u}} T_{\mathrm{l}}) \gg T_{\mathrm{c}}$ $P(ilde{W})
 ightarrow ext{Gaussian}$
 - $(T_u T_l) \ll T_c$ $P(\tilde{W}) \rightarrow$ neg. exponential

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Gaussian spectral linewidth: Fluctuations in energy

Prob. distribution of energy follows a Gamma distribution

$$W = \int_{T_1}^{T_u} I(t) dt; \quad P(\tilde{W}) = \frac{M^M}{\Gamma(M)} \tilde{W}^{M-1} \exp(-M\tilde{W})$$

• $\tilde{W} = W/\langle W \rangle$ • $\tilde{W} = W/\langle W \rangle$ • \tilde{W} : av. number of modes $M \approx (T_u - T_l)/T_c$ • $(T_u - T_l) \gg T_c$ $P(\tilde{W}) \rightarrow \text{Gaussian}$ • $(T_u - T_l) \ll T_c$ $P(\tilde{W}) \rightarrow \text{neg. exponential}$ • $T_u - T_l = 100T_c; \text{Estimated } M \approx 30.1$

Modeling FEL radiation

Interaction with atoms

Interaction with atoms

Simulation Algorithms Gallery of results

Gaussian spectral linewidth: Fluctuations in intensity

Prob. distribution of instantaneous intensity

$$P[\tilde{I}(t)] = \exp(-\tilde{I}(t))$$

Interaction with atoms

Enhancement of Non-Linear Processes

r-photon absorption

Interaction with atoms

Enhancement of Non-Linear Processes

۲

Interaction with atoms

Interaction with atoms

Ionization of Ne @ 93 eV

Effects of the pulse duration: Sequential vs Direct channels

Lines: Yields when both sequential and direct are present

۲

۰

Interaction with atoms

Interaction with atoms

Ionization of Ne @ 93 eV

Effects of the pulse duration: Sequential vs Direct channels

Pulse duration 5fs

Ionization of Ne @ 93 eV

Effects of chaotic pulses

Symbols: Yields for deterministic pulse

Lines: Average yields for 10⁴ chaotic pulses

Ionization of Ne @ 93 eV

Effects of chaotic pulses

Lines: Average yields for 10⁴ chaotic pulses

۰

Interaction with atoms

Interaction with atoms

Ionization of Ne @ 93 eV

Can we obtain average stochastic yields deterministically?

۰

Interaction with atoms

Interaction with atoms

Ionization of Ne @ 93 eV

Can we obtain average stochastic yields deterministically?

