ATOMS AND MOLECULES IN INTENSE ULTRASHORT LASER PULSES: IS THERE A BRIDGE BETWEEN LONG AND SHORT WAVELENGTH REGIMES?

Alejandro Saenz

AG Moderne Optik Institut für Physik Humboldt-Universität zu Berlin

(Kavli-Institute for Theoretical Physics, 23.08.2010)

Quasistatic vs. multiphoton picture: electron spectra of H atom

H atom:

lonization potential $I_P = 13.6 \text{ eV}$ **400 nm (3.1 eV)** $\longrightarrow N_{\text{ph,min}} = 5$ **800 nm (1.55 eV)** $\longrightarrow N_{\text{ph,min}} = 9$ **1600 nm (0.775 eV)** $\longrightarrow N_{\text{ph,min}} = 18$

Efficient solution of TDSE for H atom: Y. V. Vanne and A. Saenz, to be published

LOPT from helium to molecular hydrogen

J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 5629-5637. Printed in the UK

PII: S0953-4075(99)07138-2

Theoretical two-, three- and four-photon ionization cross sections of helium in the XUV range

Alejandro Saenz[†] and P Lambropoulos[†][‡]

† Max-Planck-Institute for Quantum Optics, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

‡ Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, PO Box 1527, Heraklion 71110, Crete, Greece and

Department of Physics, University of Crete, Greece

J. Phys. B: At. Mol. Opt. Phys. 33 (2000) 2791-2807. Printed in the UK

PII: S0953-4075(00)50485-4

Effect of vibration and internuclear axis orientation on multiphoton ionization of $\rm H_2^+$

Amalia Apalategui[†], Alejandro Saenz[†], and P Lambropoulos[†][‡]

 \dagger Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany

‡ Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, PO Box 1527, Heraklion 71110, Crete and

Department of Physics, University of Crete, Greece

INSTITUTE OF PHYSICS PUBLISHING

JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 1909-1928

PII: S0953-4075(02)33213-9

Multiphoton ionization of the hydrogen molecule H₂

Amalia Apalategui and Alejandro Saenz

Fachbereich Chemie, Universität Konstanz, Fach M 721, D-78457 Konstanz, Germany

LOPT regime for H₂: intensity scan ($R = 1.4 a_0$)

$$\Gamma^{(N)} = \sigma^{(N)} \left(\frac{I}{\hbar\omega}\right)^N$$

- N: Number of photons
- $\Gamma^{(N)}$: Ionization rate
- σ^(N): N-photon ionization cross-section
- *I*: Intensity
- $\hbar\omega$: Photon energy

lonization yield: $P_{\text{ion}} = \int_{\text{pulse}} \Gamma^{(N)} dt$

LOPT: Ionization yield $P_{\text{ion}} = \int \Gamma^{(N)} dt$ $\Gamma^{(N)} = \sigma^{(N)} \left(\frac{I}{\hbar\omega}\right)^{N}, \quad \sigma^{(N)} \propto \left| \sum_{\nu,\mu...\zeta} \frac{\langle \Psi_{f} | \hat{D} | \Psi_{\nu} \rangle \langle \Psi_{\nu} | \hat{D} | \Psi_{\mu} \rangle \cdots \langle \Psi_{\zeta} | \hat{D} | \Psi_{i} \rangle}{[E_{\nu} - E_{i} - (N-1)\omega] [E_{\mu} - E_{i} - (N-2)\omega] \cdots [E_{\zeta} - E_{i} - \omega]} \right|^{2}$

LOPT: Ionization yield $P_{\text{ion}} = \int \Gamma^{(N)} dt$ $\Gamma^{(N)} = \sigma^{(N)} \left(\frac{I}{\hbar\omega}\right)^{N}, \quad \sigma^{(N)} \propto \left| \sum_{\nu,\mu...\zeta} \frac{\langle \Psi_{f} | \hat{D} | \Psi_{\nu} \rangle \langle \Psi_{\nu} | \hat{D} | \Psi_{\mu} \rangle \cdots \langle \Psi_{\zeta} | \hat{D} | \Psi_{i} \rangle}{[E_{\nu} - E_{i} - (N-1)\omega] [E_{\mu} - E_{i} - (N-2)\omega] \cdots [E_{\zeta} - E_{i} - \omega]} \right|^{2}$

LOPT: Ionization yield $P_{\text{ion}} = \int \Gamma^{(N)} dt$ $\Gamma^{(N)} = \sigma^{(N)} \left(\frac{I}{\hbar\omega}\right)^{N}, \quad \sigma^{(N)} \propto \left| \sum_{\nu,\mu...\zeta} \frac{\langle \Psi_{f} | \hat{D} | \Psi_{\nu} \rangle \langle \Psi_{\nu} | \hat{D} | \Psi_{\mu} \rangle \cdots \langle \Psi_{\zeta} | \hat{D} | \Psi_{i} \rangle}{[E_{\nu} - E_{i} - (N-1)\omega] [E_{\mu} - E_{i} - (N-2)\omega] \cdots [E_{\zeta} - E_{i} - \omega]} \right|^{2}$

LOPT: Ionization yield $P_{\text{ion}} = \int \Gamma^{(N)} dt$ $\Gamma^{(N)} = \sigma^{(N)} \left(\frac{I}{\hbar\omega}\right)^{N}, \quad \sigma^{(N)} \propto \left| \sum_{\nu,\mu...\zeta} \frac{\langle \Psi_{f} | \hat{D} | \Psi_{\nu} \rangle \langle \Psi_{\nu} | \hat{D} | \Psi_{\mu} \rangle \cdots \langle \Psi_{\zeta} | \hat{D} | \Psi_{i} \rangle}{[E_{\nu} - E_{i} - (N-1)\omega] [E_{\mu} - E_{i} - (N-2)\omega] \cdots [E_{\zeta} - E_{i} - \omega]} \right|^{2}$

Photoelectron spectra for H₂

LOPT prediction:

only first Σ_u peak exists (3 photon process)!

Additional peaks: above-threshold ionization (ATI)

H₂ at $R = 1.40 a_0$ Photon energy: 6.2 eVPulse length: 25 cycles $\approx 16.5 \text{ fs}$

R-dependent ab initio dc ionization rate for H $_2$

Ab initio calculation (dc field) and experiment confirms: No FC distribution for H₂. [A. Saenz, *Phys. Rev. A* **61**, 051402 (R) (2000); *Phys. Rev. A* **66**, 063408 (2002).]

Validity of quasi-static approximation for H₂

Full dimensional solution of TDSE: M. Awasthi, Y. V. Vanne, A. Saenz, J. Phys. B **38**, 3973 (2005) [method]; M. Awasthi and A. Saenz, J. Phys. B: **39**, S389 (2006) [R dependence].

Strong-field approximation (SFA) for oxygen and nitrogen

Oxygen O₂

Nitrogen N₂

(from D. Milosevic, Phys. Rev. A 74, 063404 (2006))

Validity of MO-ADK and MO-SFA-V/L for H₂

Validity of MO-ADK and MO-SFA-V/L for H_2

Floquet versus SFA and TDSE

Figure 6.10.: Ionization rates of an H atom for an 800 nm laser field vs. laser intensity. Floquet results are compared with ionization rates yielded by the TDSE method, L-gauge SFA (L-SFA), L-gauge SFA with Krainov's Coulomb correction (K-SFA), V-gauge SFA (V-SFA), and V-gauge SFA with the Coulomb correction of A. Becker *et al.* (B-SFA).

Internuclear-distance dependent ion yields of H_2 (800 nm, perp.)

[for method see: Y.V. Vanne and A. Saenz, J. Modern Optics 55, 2655 (2008); Phys. Rev. A 80, 053422 (2009)]

Energy-resolved electron spectra (ATI)

H₂: Hartree-Fock vs. DFT core (excitation)

M. Awasthi et al. PRA **77**, 063403 (2008)

Validity of the SAE approximation for H₂

M. Awasthi et al. PRA **77**, 063403 (2008)