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What do we mean by strong field physics?

Phenomena:

  High harmonic generation

  Seq. & non-seq. multiple ionization

  Above threshold ionization

  Coulomb explosion of molecules

  X-rays from clusters
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What do we mean by strong field physics?

Attributes:

  Ionization driven processes

  Electron wave packet dynamics (non-trivial!)

  Recollision model

  Quantum orbits

  Non-perturbative: HI ∼ Hat

dq(I) = ! A"(I) exp[-iS"(I)]
traj

Sum over
paths



1-d quantum model

Visualizing quantum orbits
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Strong field physics in attoscience 

  Generation
  Single atto pulses from cutoff harmonics

  Trains of atto pulses from plateau harmonics

  New paradigm for single pulse production
  Trains of atto pulses with one pulse per IR cycle

  Compression of APT pulses
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Strong field physics in attoscience 

  Applications

  Combine attosecond pulse with strong IR field.
   Above threshold attosecond electron wave packets.

  Attosecond electron wave packet interferometry
  Near threshold AEWPs - quantum path selection.
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APTs: Phase locking
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APTs: Phase locking

Time

Ex(t) =
∑

q

Eq sin (q[ω1t − φq] + ϕ)

ϕ = 0 ϕ = π/2

APT electric fields

q-dependent phase
C-E phase



Example: Quantum Path Selection 

Idea = By controlling the time of ionization,
           we can choose one of several interfering 
           contributions to a strong field process.

In general, we can hope to better understand and 
perhaps control strong field processes via this method.
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All tunneling WPs are “identical”

Born outside potential well, with initial velocity v  = 00

Born near peak of IR cycle

Duration depends on IR intensity 

Ionization step is highly non-linear 
- limits “low-IR” experiments

Tunneling electron wave packets



APT electron wave packets



APT electron wave packets

Time of release determined by APT

Can be born near or even below threshold

Ionization step separate from (IR) strong field dynamics 
- study “weak” IR or “strong” IR dynamics

Properties can be tailored by APT

Duration

Non-zero v   - can be left or right0

Chirp (on attosecond scale)



Quantum Path Selection 

A previous theoretical study showed that 
QPS via APT driven ionization could be 
used to select a single contribution to the 
high harmonic spectrum.
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E0 neutral -2.898 au -2.902 au

E0 ion -1.920 au -2.000 au

1st I.P.  0.978 au   0.904 au

2-d He 6-d He

The “Aligned” Helium Atom

Example: Non-sequential double ionization
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Example: Non-sequential double ionization

IR intensity IR intensity IR intensity

Ir    =  5 x 1014 W/cm2

APT =  1 x 1013 W/cm2

APT = harmonics 11-19
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Example: Non-sequential double ionization

IR intensity
Yi

el
d

Comparing electron 
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Ionization drives HHG

Single atom response
  Electron WP must return to core:

  Ellipticity dependence
  Saturation

  Free electrons reduce the refractive index.
  Happens in space: fundamental defocused.
  Happens in time: frequency modulation.

Propagation
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Calculating the single atom and macroscopic response

∇
2

⊥E1(ω, r) +
2iω

c

∂E1(ω, r)

∂z
= G(ω, r)

Non-adiabatic, coupled solutions of 
wave equation and time-dependent 
Schrödinger equation. 

∇
2
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c

∂Eh(ω, r)

∂z
= −ω2µ0Pnl(ω, r) −

iω

c
α(ω, r)Eh(ω, r)

SEWA: Brabec and Krausz, Rev. Mod. Phys 2001
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Laser field:             from ionization
  Free electrons change refractive index in 

space and time. Leads to defocusing and 
self-phase modulation (frequency shift).

  Loss of energy to ionization process

G(ω, r)

  Use ADK rates, scale ionization probability
to fit numerical solution of TDSE

Gaarde et al, PRL submitted

Harmonic fields
Pnl(t, r) = Natom(t, r)d(t, r)

   Use SFA, non-adiabatic

  Absorption α(ω, r)
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Single attosecond pulse production

SAP production is usually understood 
as a single atom effect.

Time

~ 250 as

Single attosecond pulse
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Plateau Cutoff

using short pulse

 Two cycle (5-6 fs) driving pulse.

 Spectral selection.

 Carrier envelope phase control.
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Krausz Group, Nature 2003

Few cycle C-E control of HHG
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Hentschel, et al, Nature 2001.

Isolated 630 as pulses at 90 eV

  Measured absolute phase of laser field:
Large dynamical blue shift, up to 35%

Result of rapid ionization dynamics?

750 nm, 7 fs pulses, I = 9e14 W/cm  2
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Attosecond pulse selection

Hentschel, et al, Nature 2001.

Isolated 630 as pulses at 90 eV

  Measured absolute phase of laser field:
Large dynamical blue shift, up to 35%

Result of rapid ionization dynamics?

750 nm, 7 fs pulses, I = 9e14 W/cm  2

Selection of single attosecond pulse in farfield

 The pulse is too long (3 cycles).

 The C-E phase was not controlled.
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Initial laser pulse After propagation

 Strongly divergent wave front
Intensity peaks at different
times for different radial pos.

Gaarde et al, PRL submitted

Calculation
using parameters from 2001 exp.
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Harmonic generation and attosecond XUV pulses
Spatiotemporal intensity profile of 90 eV radiation

 Multiple pulses in nearfield

 Reshaped driving laser pulse 
means they are generated with 
different divergences

Spatial filter, farfield

1.5 m
3.0 m

Gaarde and Schafer, in preparation

Spatial filter in farfield works as time gate
Isolate a single attosecond pulse among several

Spatial filter is XUV mirror with a 2 mm diameter, as in 
Hentschel et al, Nature 2001 (placed 2.5 m from source)

Works for even longer pulses:

 9.5 fs driving pulse gives 
contrast ratio of 10:1

 11 fs driving pulse gives 
contrast ratio of 6:1

7 fs

9.5 fs

 630 as, 3 pJ



Strong field physics in attoscience 

  What we don’t know:
Where are multi electron effects important?

  What we know we don’t know: 
Beyond single active electron model,
multiple electrons in full dimensionality.

  Theory challenges

  We need better TDSE/MWE solvers.



Strong field physics in attoscience 

  Take home message:

Attosecond pulses are an exciting new tool to 
increase the precision with which we can study and 
control strong field processes. This, in turn, can lead 
to new attosecond sources and metrologies.


