Asymmetries in photoionization by ultrashort laser Pulses: importance of Coulomb potential correction to SFA models.

by
S. Chellkowski, A.D. Bandrauk,

University of Shebrooke Sherbrooke,

Measurement scheme of the asymmetry: two detectors along the electric field: $\quad E(t)=\varepsilon(t) \cos (\omega t+\varphi)$ or two-color field 1-color, long

Linear polarization

monochromatic pulses:
no asymmetry:
$P_{+}=P_{-}$

We show that Coulomb corrections to simple tunneling
Keldysh models are very significant for angular distributions of photoelectrons in the case of few cycle pulse or in the case of two-color pulses.

It is convenient to analyze the effect via normalized forward-backward asymmetries: $\mathrm{a}=\left(\mathbf{P}+-\mathbb{P}^{-}\right) /\left(\mathbf{P}++\mathbf{P}_{-}\right)$.

For long (more than 10 cycles) pulse the asymmetry coefficient "a" is zero. The asymmetry appears when the pulse is very short or when two-colors are used.

Our earlier studies:

" $\omega+2 \omega$ " case : PRA 63, 023409 (2001),
Carrier-Envelope effects: PRA 70, 013615 (2004),
PRA 71, 053815 (2005)

Newton equation describing the electron Motion after tunneling (along z-axis, $\mathbf{A}_{\mathbf{I}} \| \mathrm{O}-\mathrm{z}$)

$$
\frac{d \mathrm{v}}{\mathrm{dt}}=\frac{1}{c} \frac{\partial A_{l}}{\partial t}-\frac{\partial \mathrm{V}_{\mathrm{C}}}{\partial \mathrm{z}}
$$

If we neglect the Coulomb potential:

$$
\overrightarrow{\mathrm{v}}\left(\mathrm{t}_{\mathrm{f}}\right)=\overrightarrow{\mathrm{v}}_{0}-\overrightarrow{\mathrm{A}}_{1}\left(\mathrm{t}_{0}\right) / c
$$

We solve numerically the time-dependent Schrödinger equation:
$\mathrm{i} \frac{\partial \psi(r, \theta, t)}{\partial \mathrm{t}}=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\mathrm{L}^{2}}{r^{2}}\right) \psi+\left[\mathrm{V}_{\mathrm{C}}(r)+r \cos (\theta) \mathrm{E}(\mathrm{t})\right] \psi$
Where $\quad V_{C}(r)=-\frac{1}{r} \quad$ for a hydrogen atom.
The electric field $E(t)$ is defined via the vector potential $A(t)$

$$
\mathrm{E}(\mathrm{t})=-\frac{1}{\mathrm{c}} \frac{\partial}{\partial \mathrm{t}} \mathrm{~A}(\mathrm{t})=\varepsilon(\mathrm{t}) \cos \left(\omega\left(\mathrm{t}-\mathrm{t}_{\mathrm{M}}\right)+\varphi\right)+\mathrm{E}_{\text {corr }}
$$

with $\mathrm{A}(\mathrm{t})=-\mathrm{c} \varepsilon(\mathrm{t}) \sin \left(\omega\left(\mathrm{t}-\mathrm{t}_{\mathrm{M}}\right)+\varphi\right) / \omega$,

$$
\mathrm{E}_{\text {corr }}=\frac{1}{\omega} \sin \left(\omega\left(\mathrm{t}-\mathrm{t}_{\mathrm{M}}\right)+\varphi\right) \frac{\partial \varepsilon(\mathrm{t})}{\partial \mathrm{t}}, \varepsilon(\mathrm{t})=\mathrm{E}_{\mathrm{M}} \exp \left(-\frac{2 \ln 2\left(\mathrm{t}-\mathrm{t}_{\mathrm{M}}\right)^{2}}{\tau_{\mathrm{p}}^{2}}\right)
$$

Probabilties $\mathbf{P}_{+}, \mathbf{P}_{\text {_ }}$ in both detectors is obtained from the probability flux j_{r} calculated near the absorbing boundaries :
$\mathrm{P}_{+}=2 \pi \int_{0}^{t_{f}} d t \int_{0}^{\theta_{0}} d \theta \sin (\theta) r^{2} \mathrm{j}_{\mathrm{r}}(\theta, \mathrm{t}), \quad \mathrm{P}=2 \pi \int_{0}^{t_{f}} d t \int_{\pi-\theta_{0}}^{\pi} d \theta \sin (\theta) r^{2} \mathrm{j}_{\mathrm{r}}(\theta, \mathrm{t})$,
where $\mathrm{j}_{\mathrm{r}}(\theta, \mathrm{t})=\left.\operatorname{Re}\left[-\mathrm{i} \psi^{*}(r, \theta, \mathrm{t}) \frac{\partial}{\partial r} \psi(r, \theta, \mathrm{t})\right]\right|_{r=r_{0}}$ is the probability flux.

Fig.15. intensity $\left(\mathrm{W} / \mathrm{cm}^{2}\right)$

Fig. 3.

Fig. 7

Fig. 6.

Classical calculation of electron trajectories initialized at tunneling Time, close to the maxima of $|\mathrm{E}(\mathrm{t})|$. Each trajectory was Weighed by the tunneling Probability.

Experimental asymmetries (Garching). F. Lindner, Ph.D. Thesis.
$\lambda=760 \mathrm{~nm}, \tau_{\mathrm{p}}=5 \mathrm{fs}$.
Less asymmetry for higher intensities

Phase dependence of fast electron ATI spectra, $\mathrm{I}=6 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}, \mathrm{t}_{\mathrm{p}}=3.9 \mathrm{fs}$

From:PRA 71, 053815 (2005)
Electron energy (eV)

1. Few cycle pulses ($\tau_{\mathrm{p}}<2$ cycles) lead to considerable forward /backward asymmetries along the laser polarization vector very sensitive to the carrier-envelope phase. Several regimes of intensites and ranges of electron energy were identified.
2. Asymmetry exhibits simple patterns in the intermediate intensity
regime, between tunneling and multiphoton regime, $\gamma \cong 1$.
3. The asymmetry of slow electrons originates from the

Coulomb attraction on the returning electron from the core.

