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OUTLOOK

e Ideas of the rescattering mechanism

e High Harmonic Generation (HHG) within the rescat-

tering mechanism

e Specifics of initial /final wave function manifested in

HHG

— Angular part: Degenerate Combinational HG

— Radial part: sensitivity of HHG rates

e Another process described by rescattering mechanism:

Above-Threshold Detachment with Excitation

e Conclusion
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THREE-STEP OR RESCATTERING MECHANISM

The three steps are:

1. Above-Threshold lonization (ATI) (neutral atoms)

or Above-Threshold Detachment (ATD) (anions)
2. Propagation of electron in the field of a laser wave

3. Recollision with residual atomic core in laser field

(Specifics of the last step depends on the process considered)

Example: High Harmonic Generation (HHG)

A+mng++e+(N—m)w@>A+{Nw}

The last step is Laser Assisted Recombination (LAR)
Three-step mechanism is known also under names 'atomic antenna’,
or 'recollision’, or 'two-step’, or 'simpleman model

M. Yu. Kuchiev, Pis'ma Zh. Eksp. Teor. Fiz. 45, 319 (1987) [JETP
Letters 45, 404 (1987)]; J. Phys. B 28, 5093 (1995); Phys. Lett. A
212, 77 (1996).

P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).



Processes effectively described by three-step mechanism

ONE-ELECTRON PROCESSES
High Harmonic Generation (HHG)

A+mw—AT+e+(N—m)w— A+ {Nw}
High Above-Threshold lonization (HATI)
A+mw —AT+e+ (N —m)w— AT+ e(py)

TWO-ELECTRON PROCESSES

Double ionization (DI)
A+mw—AT+e+(N—m)w— AT+ 2¢

Above-Threshold lonization with Excitation (ATIE) or

Above-Threshold Detachment with Excitation (ATDE)
A+mw—AT+e+(N-—m)w— (AT) +e

Since A™* is rapidly ionized in the laser field this process effectively

contributes to yield of AT ions

V. N. Ostrovsky, J. Phys. B 36, 2647 (2003)



Typical Three-Step Process: High Harmonic Generation

Rate:

Ry = ool

27r03

Amplitude:
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G(t,t') is Green function; approximately
, d’p
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M. Yu. Kuchiev and V. N. Ostrovsky. Phys. Rev. A 60, 3111 (1999):
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Ao (Ko) - ATI amplitude;
Cnim(E) - Laser Assisted Recombination (LAR) amplitude;
B g (Kom) - Propagation-LAR (PLAR) amplitude
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The first step: Above-Threshold Detachment

Steady (quasienergy) state, rate calculation, no depletion

Keldysh scheme

Am <ﬁm> —
V()

dt (@5, (1)|Vr(t)|pa(t))
CF(t)

| Nl =
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¢z, (t) - Volkov wave function;

1) = ¢o(7) e Eat ~ initial bound state wave function
E,+mw=3p? + U, U, = F*/(4w?) - ponderomotive potential
Saddle-point calculation of integral over time - adiabatic process; the

number of absorbed photons m is large (Gribakin and Kuchiev 1997)
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Saddle points  t,,,, are solution of equation S’(t) =0




Technical details
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The Third Step: Laser Assisted Recombination

A Jaron, J.Z.Kaminski, and F.Ehlotzky, Phys. Rev. A 61, 023404

(2000)

M.Yu.Kuchiev and V.N.Ostrovsky, Phys. Rev. A 61, 033414 (2000)
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SPECIFICS OF INITIAL/FINAL WAVE FUNCTION IN HHG

Conventional an active s-electron is considered and its wave functions

is taken in the form of a mere exponent, ¢, = N exp(—xr)
What occurs if
e Initial state orbital momentum ¢ is non-zero ?

e Radial wave function has more complicated (and realistic) form ?

Conventional HG Combinational HG Degenerate Combi-
national HG (DCHG)

The my-changing transitions are of interest since

e the emitted harmonic differs in polarization from that of the orig-

inal laser wave;

e the harmonics produced by the conventional and DCHG processes

are not coherent, although have the same frequency



DCHG process is forbidden by the Pauli Exclusion Principle if the ac-

tive electron belongs to a filled shell, like np® shells in the noble gases

Ne — Xe. The same applies to halogen anions F~ — |™.

Within the rescattering mechanism for HHG initial m, = 0 sublevel is

effectively selected on the first (ATI) step

There seems to be no obvious general reason to conclude what is
more efficient on the last (LAR) step: my-conserving (conventional
HHG) or my-changing (DCHG) process. Therefore numerical calcula-
tions are required. Two examples were considered: excited hydrogen

atom H(2p) and B(1s2s* 2p) ground state atom



CHOICE OF RADIAL WAVE FUNCTIONS

e Asymptotic (large-r) approximation together with length gauge
for electromagnetic field work well for ATl (ATD) (Gribakin and
Kuchiev; Kjeldsen and Madsen).

e For the LAR amplitude all range of r is important.

e Therefore realistic (non-asymptotic) wave functions might be im-

portant for calculations of HHG rates.

Realistic wave functions (Clementi and Roetti)
Ot = 3 Coxonome(7)
i
Xty (F) = R o(r) Yom,(F) , 7 =71,
R, (1) = Nt exp(—Gr)
The sum contains 4 or 5 terms; the parameters (;, C;, N; are tabu-

lated.

Asymptotic wave function
buitin, (F) = At~ exp(—#1) Yo, () (> 1/k)
v =—, b, = gk

Calculations with asymptotic wave functions:

V. N. Ostrovsky and J. B. Greenwood, J. Phys. B 38, 1867 (2005)



Multiphoton detachment with atom excitation

AT+ Nw — A*(v) + e(py) ,

example : H™ + Nw — H(2s, 2p) + e(pn) ,
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CONCLUSION

(recent novel results)

e m-changing (DCHG) process is discussed, calculated for the first

time and compared with conventional HHG process;

e m-changing (DCHG) process is analyzed and calculated for the

first time

e High sensitivity of HHG rates to details of final state radial wave

functions is found



