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Moire heterostructures

•  2d materials with Moire superlattices: Flat 
bands and correlation dominated physics

•  Experiment: many correlated phases 
(superconductors, insulators, nematics...)

•  Theory: How to understand? 



Theoretical approaches

• One possibility: start from strong coupling, 
treat systems as doped Mott insulators

•  Second possibility: start from weak coupling, 
examine instabilities of Fermi surface

•  Empirically: intermediate coupling. Expect 
weak coupling appropriate for at least some 
Moire systems. 



Weak coupling near Van Hove filling

•  In 2d, Van Hove singularities (VHS) with log 
divergent density of states

• Near VHS, even weak coupling gives 
enhanced energy scales for correlated 
states (log square)

•  Tuning to VHS in Moire subbands should 
be `easy’ (gating)

•  If Fermi surface near VHS is nested, rich 
physics emerges



History: square lattice. 

•  Square lattice system near 
half filling

• Nearest neighbor tight 
binding model

•  Van Hove singularity and 
nested Fermi surface
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Square lattice review

•  Instabilities in multiple 
channels, both particle 
particle and particle hole

•  Log squared instabilities 
(enhanced energy scale)
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Analyse competition between different orders using RG

l Schulz 1987, Dzyaloshinskii 1987, Furukawa, Rice 1998 

l Progressively integrate out high energy states and 
examine flow of couplings. Marginal with log corrections 

l Three sources of log divergence: BCS, nesting, DOS 

l leading divergence is log2(Λ/T) 

l One-loop RG for leading logs 
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Square lattice: bottom line

•  At leading (log square) order, AF and d-SC 
are degenerate

•  Incorporate subleading single logs: AF 
`wins’ at half filling, gives way to d-SC upon 
doping

•  Incorporation of subleading single logs is 
messy...



Honeycomb lattice is cleaner!

Rahul Nandkishore,  
Leonid Levitov and 
Andrey Chubukov

Nature Physics, 8, 
158–163 (2012)  
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Doped Graphene

Perfect nesting in first 
and second neighbor 
tight binding model



At 3/8 or 5/8 filling, the tight binding bandstructure 
displays a) Van Hove singularity (strong interactions) b) 

Nested FS (strong density wave fluctuations)

What happens?



Analyse competition between different orders using RG

l Progressively integrate out high energy states and 
examine flow of couplings. Marginal with log corrections 

l Three sources of log divergence: BCS, nesting, DOS 

l leading divergence is log2(Λ/T) 

l One-loop RG for leading logs 

l Similar to square lattice at half filling: Schulz 1987, 
Dzyaloshinskii 1987, Furukawa, Rice 1998 
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Weak coupling RG flow

•  RG flows to strong coupling (instability)

•  Unique and universal instability. 



Contrast with standard weak coupling result

Tc enhanced by large DOS  

What kind of ordering?



Honeycomb lattice

•  Instabilities to 
SDW and d-SC

•  d-SC wins at 
leading log order
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Why the honeycomb lattice is better for SC
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How to optimize for (two 
dimensional) SC?

•  Saddle points of dispersion (the more the 
better)

• Need nesting (generate attraction)

•  Saddle points separated by half-reciprocal 
lattice vector

•  Honeycomb lattice as ideal platform



Square lattice: d-wave

Honeycomb: doubly degenerate d-wave

Interplay of d-wave orders below Tc cannot be 
addressed through RG. Need a Ginzburg Landau 

theory. 

A side benefit…



Expressing F in terms
Δxy, Δx^2-y^2, find K2>0

Hence chiral SC

7

(the high energy tail is negligible). This gives

gc(T ⌧ Tc) ⇡ ⇠(T )�3d ⇡ ⇠(T )�6 (26)

where ⇠(T ) is given by substituting E by kBT in (4).
We note that this expression decreases exponentially fast

with temperature, but does not go to zero as T ! Tc. To
obtain a critical temperature that does indeed go to zero
as T ! Tc, we must take into account the high energy
tail of states, which starts to become important as T
approaches Tc, and which dominates for T > Tc. How to
describe this? Can we get a ‘scaling theory’ for gc(T )?

F = ↵(T � Tc)(|�xy|2 + |�x2�y2 |2) +K1(|�xy|2 + |�x2�y2 |2)2

+ K2|�2
xy +�2

x2�y2 |2 +O(�6) (27)



•  Honeycomb layers, near Van Hove doping 

•  Superconductor (Tc=2K).

•  TRS breaking, nodeless…

• Most likely d+id. 
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We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by
muon-spin-rotation/relaxation (µSR) measurements. Zero-field µSR reveals the occurrence of small spontaneous
static magnetic fields with the onset of superconductivity. This finding suggests that the superconducting state
of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field µSR is
nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry,
several superconducting states supporting time-reversal-symmetry breaking in SrPtAs are allowed. Out of these,
a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data.
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Transition metal pnictides have attracted considerable
scientific interest as they present the second largest family
of superconductors after the cuprates.1 All superconductors
of this family share one common structural feature: Super-
conductivity takes place in a square lattice formed by the
transition metal elements. Very recently superconductivity
with a Tc of 2.4 K has been discovered in SrPtAs,2 which has
a unique and attractive structural feature: It crystallizes in a
hexagonal structure with weakly coupled PtAs layers forming
a honeycomb lattice. SrPtAs supports three pairs of split Fermi
surfaces, two of which are hole-like and centered around the
! point with a cylindrical shape extended along the kz direction
and together host only about 30% of the density of states.
The remaining 70% of the density of states are hosted by the
third pair of split Fermi surfaces that is electron-like, centered
around the K and K ′ and consisting of a cylindrical and a
cigar-like sheet.3,4 One unit cell of SrPtAs contains two PtAs
layers each of which lacks a center of inversion symmetry
even though the system has a global inversion center.3 Locally
broken inversion symmetry in SrPtAs together with a strong
spin-orbit coupling might cause dramatic effects on the super-
conducting properties of this system that are otherwise found in
noncentrosymmetric materials only.5 Indeed, theoretical cal-
culations focusing on a spin-singlet order parameter for SrPtAs
predict a significant enhancement of the Pauli limiting field and
the zero-temperature spin susceptibility.3 In addition, a com-
prehensive symmetry analysis reveals that some unconven-
tional states are possible, such as the A2u state with a dominant
f -wave component and the Eg state with a dominant chiral
d-wave part, which breaks time-reversal symmetry (TRS).6

In this Rapid Communication, we report on muon spin-
rotation/relaxation (µSR) measurements to determine the
magnetic and superconducting properties of SrPtAs. We
find small spontaneous internal magnetic fields below Tc

showing that the superconducting state breaks TRS. Low-
temperature superfluid density measurements indicate the
absence of extended nodes in the gap function of SrPtAs.
These experimental findings are discussed in light of the
different superconducting states allowed by symmetry. From
these states, the Eg (chiral d-wave) order parameter is the
most likely pairing state in SrPtAs. We also discuss some
other possible scenarios.

Two batches of polycrystalline samples (A and B) of
SrPtAs were prepared via a solid state reaction method
as described in Ref. 2. Sample A is a disk-shaped pellet
(≈ 12 mm diameter and 1 mm thickness), while sample B is
a powder of polycrystalline SrPtAs. Both samples were glued
to a Ag sample holder. Low-temperature µSR measurements
on sample A were carried out down to 0.019 K using the
low-temperature facility (LTF) muon instrument located
on the πM3 beamline of the Swiss Muon Source at the
Paul Scherrer Institute, Villigen, Switzerland. Analogous
measurements were carried out on sample B using the MuSR
spectrometer at the ISIS pulsed muon facility, Oxford, United
Kingdom. Data were collected with zero (ZF), longitudinal
(LF), and transverse magnetic fields (TF). The magnetic field
was applied above the superconducting transition temperature
and the sample subsequently cooled down to base temperature.
The µSR data were analyzed using the free software package
MUSRFIT.7
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Recent muon spin-rotation (µSR) measurements on SrPtAs revealed time-reversal-symmetry breaking with
the onset of superconductivity [Biswas et al., Phys. Rev. B 87, 180503(R) (2013)], suggesting an unconventional
superconducting state. We investigate this possibility via the functional renormalization group and find a chiral
(d + id )-wave order parameter favored by the multiband fermiology and hexagonal symmetry of SrPtAs. This
(d + id )-wave state exhibits significant gap anisotropies as well as gap differences on the different bands, but
only has point nodes on one of the bands at the Brillouin zone corners. We study the topological characteristics
of this superconducting phase, which features Majorana-Weyl nodes in the bulk, protected surface states, and
an associated thermal Hall response. The lack of extended nodes and the spontaneously broken time-reversal
symmetry of the (d + id )-wave state are in agreement with the µSR experiments. Our theoretical findings,
together with the experimental evidence, thus suggest that SrPtAs is an example of chiral d -wave pairing and a
Weyl superconductor.

DOI: 10.1103/PhysRevB.89.020509 PACS number(s): 74.70.Xa, 74.20.Rp, 74.20.Mn

Introduction. SrPtAs is a pnictide superconductor
(Tc = 2.4 K), where present experimental evidence strongly
suggests broken time-reversal symmetry (TRS) in the super-
conducting state [1,2]. So far, this property has only been
found in nature for a limited number of compounds such
as Sr2RuO4 [3,4], in the manner of SrPtAs a quasi-two-
dimensional material, and naturally offers the possibility of
a chiral superconducting state with nontrivial topological
properties [5]. Unlike other pnictide superconductors, the
crystal structure of SrPtAs has hexagonal symmetry. This has
important consequences for possible chiral superconducting
states: While square-lattice symmetry as found in Sr2RuO4
generically triggers a chiral p-wave triplet order parameter
due to the degeneracy of px and py waves at the instability
level, hexagonal symmetry implies degeneracy in the dx2−y 2 -
and dxy -wave channel, too. In such a case, similar to the
p-wave scenario on a square lattice, a chiral (dx2−y 2 + idxy )-
wave order-parameter combination that spontaneously breaks
TRS generically maximizes the condensation energy of the
superconducting state [6].

Chiral superconductors exhibit many exotic phenomena
due to their nontrivial topology [5,7,8], such as Majorana
vortex bound states and gapless chiral edge modes, that
carry quantized thermal or spin currents. Chiral d -wave
superconductivity has been previously proposed in various
model calculations for graphene doped to van Hove filling
[9–13] and has been recently propagated to explain the
superconducting state in water-intercalated sodium cobaltates
[14]. Note, however, that there exists a natural competition
between d - and f -wave superconductivity in these scenarios,
a recurrent motif in the study of superconducting instabilities
in hexagonal systems [15]. This is intuitively illustrated by a
single-orbital honeycomb Hubbard model: While the leading

instability is of d -wave symmetry for bands close to the
van Hove singularity, it changes to f -wave symmetry when
the Fermi surface consists of (disconnected) pockets around
the Brillouin zone (BZ) corners. The f -wave instability
is preferred in that case, because all gap nodes can be
placed such that they do not intersect with the Fermi surface
[12,16]. So far, unambiguous experimental evidence in support
of chiral d -wave superconductivity in a hexagonal system
is still lacking, hence awaiting further investigation and
refinement.

In this Rapid Communication, we present functional
renormalization group (FRG) [15,17] studies for SrPtAs,
which, in combination with the experimental evidence at
hand, render this system a prime candidate for chiral
d -wave superconductivity. So far, superconductivity in SrPtAs
has only been investigated within a mean-field approach
with a generic short-range density-density interaction [18].
Depending on the specific structure of the interaction, the
leading instability is either in the s- or f -wave channel,
with an additional d -wave solution close by in energy,
however. Our analysis sheds further light on the nature of
superconductivity in SrPtAs and allows for a substantiated
microscopic perspective. For intermediate interactions, we
find d -wave superconductivity as the dominant Fermi surface
instability, while ferromagnetism is non-negligible due to the
large, partly unnested density of states at the Fermi level. This
trend towards d -wave superconductivity can be attributed to
the multiband fermiology of SrPtAs shown in Fig. 1(a). While
the pockets centered around K and K ′ in the BZ are the
main drivers for superconductivity, proximity-coupled pockets
around the ! point are a crucial ingredient to tilt the system in
favor of a d -wave instability.

1098-0121/2014/89(2)/020509(5) 020509-1 ©2014 American Physical Society



Back to Moire

•  Enhanced orbital degeneracy on top of spin 
degeneracy

•  Consider SU(N) symmetric extensions of 
previous models, N>2

•  Simple toy model, much less detail than 
fRG...but simplicity helps expose key 
physics
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FIG. 2. (a) Brillouin zone of hexagonal lattices (black solid)
with inscribed Fermi surface (green dashed) at Van Hove fill-
ing. The patches are set on the Fermi surface corners M↵’s.
(b) Reduced Brillouin zone in the loop current phase. (c) Four
independent interactions in the low energy theory. Solid and
dashed lines indicate fermions at di↵erent patches. (d) Test
vertices in (left) superconducting and (right) density wave
channels, with (e) the corresponding susceptibilities.

momenta Q↵’s [see Fig. 2(a)]. This situation arises in
honeycomb lattices doped to the M point when third
neighbor and higher hoppings can be neglected, and also
in triangular and square lattices at the appropriate filling
when second neighbor and higher hoppings can be ne-
glected. Note that in Moiré heterostructures, neglecting
higher neighbor hoppings should be a safe assumption,
given the large size of the Moiré supercell.

The interactions are assumed to be weakly repulsive,
SU(Nf ) symmetric, and summarized by Fig. 2(c). Note
that the Umklapp scattering g3 is allowed since the inter-
patch nesting momenta satisfy 2Q = 0 up to reciprocal
lattice vectors.

Our setup parallels the classic works on parquet renor-
malization group (RG) [23, 25–27], except that we have
kept the number of patches Np arbitrary, and have al-
lowed for an Nf flavor degeneracy. As in Ref. 23, 25–27,
the divergent density of states and the nested Fermi sur-
face will give rise to divergent susceptibilities in both

particle particle and particle hole channels ⇧pp/ph
q⌫ =

±T
P

!

R
k Gk!G(⌥k+q)(⌥!+⌫). Here Gk! = (i! � ⇠k)�1

is the free fermionic propagator, while the Matsubara fre-
quencies ! and ⌫ correspond to the fermionic and bosonic
modes, respectively.

Di↵erent divergences are manifested in di↵erent chan-
nels [23]. Due to the Van Hove singularity, two of the
channels exhibit ⇧pp

Q ,⇧ph
0 ⇠ ln(⇤/max{T, µ}), where the

ultraviolet cuto↵ ⇤ is determined by the size of patches,
T is the temperature, and µ is the doping relative to
the Van Hove point. The other two susceptibilities re-
ceive additional logarithmic divergences from the Fermi
surface nesting

⇧pp
0 ⇠ ln

⇤

max{T, µ} ln
⇤

T
,

⇧ph
Q ⇠ ln

⇤

max{T, µ} ln
⇤

max{T, µ, t0} ,
(1)

where t0 represents higher neighbor hoppings (third
neighbor or higher for honeycomb lattice, second neigh-
bor or higher for square or triangular lattices).
Owing to the logarithmic divergences in susceptibili-

ties, a parquet RG is necessary for the analysis of the
low energy theory. The calculations are carried out fol-
lowing Ref. 23, making the standard ‘fast parquet’ ap-
proximation which focuses on the channels with the most
divergent (ln2) susceptibilities. We define the RG time
y = ⇧pp

0E , and hence obtain the RG equations

dg1
dy

= d1[g1(2g2 �Nfg1) + (2�Nf )g
2
3 ],

dg2
dy

= d1(g
2
2 + g23),

dg3
dy

= 2d1g3[2g2 � (Nf � 1)g1]� g3[(Np � 2)g3 + 2g4],

dg4
dy

= �(Np � 1)g23 � g24 .

(2)
The nesting parameter d1(y) = d⇧ph

Q /dy ⇡ ⇧ph
Q /⇧pp

0

determines the nesting degree 0  d1(y)  1, where
the maximum d1(y) = 1 indicates perfect nesting. No-
tice that the equations for g1 and g3 depend on Nf due
to the involvement of interpatch internal fermion loops.
The patch number Np is present in equations for g3 and
g4 since the internal Umklapp scattering contributes.
These equations reduce to the square lattice equations
of Ref. 25–27 when we set Np = 2, Nf = 2, and to
the hexagonal lattice equations of Ref. 23 when we set
Np = 3, Nf = 2.
We analyze the RG equations with the setup of bare

weak repulsions g1, g2, g3, g4 � 0 and finite nesting
d1(y) > 0. Motivated by twisted bilayer graphene, the
numbers Nf = 4 and Np = 3 are chosen [18, 20]. Note
that along the RG flow, g2 increases monotonically and
diverges at a certain scale yc. Meanwhile, g3 remains pos-
itive semidefinite, while g4 decreases monotonically and
may change sign along the RG flow. The behavior of g1
depends on Nf . For Nf = 2, g1 is positive semidefinite,
but for Nf > 2 it can change sign. A detailed analysis
of the RG equations following Ref. 23 is presented in the
Supplement, and reveals that for any choice of repulsive
initial interactions, there is a unique fixed trajectory i.e.
as the system flows to strong coupling, the ratios of the
couplings tend to specific values.
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FIG. 2. (a) Brillouin zone of hexagonal lattices (black solid)
with inscribed Fermi surface (green dashed) at Van Hove fill-
ing. The patches are set on the Fermi surface corners M↵’s.
(b) Reduced Brillouin zone in the loop current phase. (c) Four
independent interactions in the low energy theory. Solid and
dashed lines indicate fermions at di↵erent patches. (d) Test
vertices in (left) superconducting and (right) density wave
channels, with (e) the corresponding susceptibilities.

momenta Q↵’s [see Fig. 2(a)]. This situation arises in
honeycomb lattices doped to the M point when third
neighbor and higher hoppings can be neglected, and also
in triangular and square lattices at the appropriate filling
when second neighbor and higher hoppings can be ne-
glected. Note that in Moiré heterostructures, neglecting
higher neighbor hoppings should be a safe assumption,
given the large size of the Moiré supercell.

The interactions are assumed to be weakly repulsive,
SU(Nf ) symmetric, and summarized by Fig. 2(c). Note
that the Umklapp scattering g3 is allowed since the inter-
patch nesting momenta satisfy 2Q = 0 up to reciprocal
lattice vectors.

Our setup parallels the classic works on parquet renor-
malization group (RG) [23, 25–27], except that we have
kept the number of patches Np arbitrary, and have al-
lowed for an Nf flavor degeneracy. As in Ref. 23, 25–27,
the divergent density of states and the nested Fermi sur-
face will give rise to divergent susceptibilities in both

particle particle and particle hole channels ⇧pp/ph
q⌫ =

±T
P

!

R
k Gk!G(⌥k+q)(⌥!+⌫). Here Gk! = (i! � ⇠k)�1

is the free fermionic propagator, while the Matsubara fre-
quencies ! and ⌫ correspond to the fermionic and bosonic
modes, respectively.

Di↵erent divergences are manifested in di↵erent chan-
nels [23]. Due to the Van Hove singularity, two of the
channels exhibit ⇧pp

Q ,⇧ph
0 ⇠ ln(⇤/max{T, µ}), where the

ultraviolet cuto↵ ⇤ is determined by the size of patches,
T is the temperature, and µ is the doping relative to
the Van Hove point. The other two susceptibilities re-
ceive additional logarithmic divergences from the Fermi
surface nesting

⇧pp
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⇤

max{T, µ} ln
⇤

T
,

⇧ph
Q ⇠ ln

⇤

max{T, µ} ln
⇤

max{T, µ, t0} ,
(1)

where t0 represents higher neighbor hoppings (third
neighbor or higher for honeycomb lattice, second neigh-
bor or higher for square or triangular lattices).
Owing to the logarithmic divergences in susceptibili-

ties, a parquet RG is necessary for the analysis of the
low energy theory. The calculations are carried out fol-
lowing Ref. 23, making the standard ‘fast parquet’ ap-
proximation which focuses on the channels with the most
divergent (ln2) susceptibilities. We define the RG time
y = ⇧pp

0E , and hence obtain the RG equations

dg1
dy

= d1[g1(2g2 �Nfg1) + (2�Nf )g
2
3 ],

dg2
dy

= d1(g
2
2 + g23),

dg3
dy

= 2d1g3[2g2 � (Nf � 1)g1]� g3[(Np � 2)g3 + 2g4],
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= �(Np � 1)g23 � g24 .

(2)
The nesting parameter d1(y) = d⇧ph

Q /dy ⇡ ⇧ph
Q /⇧pp

0

determines the nesting degree 0  d1(y)  1, where
the maximum d1(y) = 1 indicates perfect nesting. No-
tice that the equations for g1 and g3 depend on Nf due
to the involvement of interpatch internal fermion loops.
The patch number Np is present in equations for g3 and
g4 since the internal Umklapp scattering contributes.
These equations reduce to the square lattice equations
of Ref. 25–27 when we set Np = 2, Nf = 2, and to
the hexagonal lattice equations of Ref. 23 when we set
Np = 3, Nf = 2.
We analyze the RG equations with the setup of bare

weak repulsions g1, g2, g3, g4 � 0 and finite nesting
d1(y) > 0. Motivated by twisted bilayer graphene, the
numbers Nf = 4 and Np = 3 are chosen [18, 20]. Note
that along the RG flow, g2 increases monotonically and
diverges at a certain scale yc. Meanwhile, g3 remains pos-
itive semidefinite, while g4 decreases monotonically and
may change sign along the RG flow. The behavior of g1
depends on Nf . For Nf = 2, g1 is positive semidefinite,
but for Nf > 2 it can change sign. A detailed analysis
of the RG equations following Ref. 23 is presented in the
Supplement, and reveals that for any choice of repulsive
initial interactions, there is a unique fixed trajectory i.e.
as the system flows to strong coupling, the ratios of the
couplings tend to specific values.

Evaluate β functions via one loop perturbative RG

Orbital degeneracy affects diagrams with loops
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FIG. 2. (a) Brillouin zone of hexagonal lattices (black solid)
with inscribed Fermi surface (green dashed) at Van Hove fill-
ing. The patches are set on the Fermi surface corners M↵’s.
(b) Reduced Brillouin zone in the loop current phase. (c) Four
independent interactions in the low energy theory. Solid and
dashed lines indicate fermions at di↵erent patches. (d) Test
vertices in (left) superconducting and (right) density wave
channels, with (e) the corresponding susceptibilities.

momenta Q↵’s [see Fig. 2(a)]. This situation arises in
honeycomb lattices doped to the M point when third
neighbor and higher hoppings can be neglected, and also
in triangular and square lattices at the appropriate filling
when second neighbor and higher hoppings can be ne-
glected. Note that in Moiré heterostructures, neglecting
higher neighbor hoppings should be a safe assumption,
given the large size of the Moiré supercell.

The interactions are assumed to be weakly repulsive,
SU(Nf ) symmetric, and summarized by Fig. 2(c). Note
that the Umklapp scattering g3 is allowed since the inter-
patch nesting momenta satisfy 2Q = 0 up to reciprocal
lattice vectors.

Our setup parallels the classic works on parquet renor-
malization group (RG) [23, 25–27], except that we have
kept the number of patches Np arbitrary, and have al-
lowed for an Nf flavor degeneracy. As in Ref. 23, 25–27,
the divergent density of states and the nested Fermi sur-
face will give rise to divergent susceptibilities in both

particle particle and particle hole channels ⇧pp/ph
q⌫ =

±T
P

!

R
k Gk!G(⌥k+q)(⌥!+⌫). Here Gk! = (i! � ⇠k)�1

is the free fermionic propagator, while the Matsubara fre-
quencies ! and ⌫ correspond to the fermionic and bosonic
modes, respectively.

Di↵erent divergences are manifested in di↵erent chan-
nels [23]. Due to the Van Hove singularity, two of the
channels exhibit ⇧pp

Q ,⇧ph
0 ⇠ ln(⇤/max{T, µ}), where the

ultraviolet cuto↵ ⇤ is determined by the size of patches,
T is the temperature, and µ is the doping relative to
the Van Hove point. The other two susceptibilities re-
ceive additional logarithmic divergences from the Fermi
surface nesting
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T
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⇧ph
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⇤

max{T, µ} ln
⇤

max{T, µ, t0} ,
(1)

where t0 represents higher neighbor hoppings (third
neighbor or higher for honeycomb lattice, second neigh-
bor or higher for square or triangular lattices).
Owing to the logarithmic divergences in susceptibili-

ties, a parquet RG is necessary for the analysis of the
low energy theory. The calculations are carried out fol-
lowing Ref. 23, making the standard ‘fast parquet’ ap-
proximation which focuses on the channels with the most
divergent (ln2) susceptibilities. We define the RG time
y = ⇧pp

0E , and hence obtain the RG equations

dg1
dy

= d1[g1(2g2 �Nfg1) + (2�Nf )g
2
3 ],

dg2
dy

= d1(g
2
2 + g23),

dg3
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= 2d1g3[2g2 � (Nf � 1)g1]� g3[(Np � 2)g3 + 2g4],
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= �(Np � 1)g23 � g24 .

(2)
The nesting parameter d1(y) = d⇧ph

Q /dy ⇡ ⇧ph
Q /⇧pp

0

determines the nesting degree 0  d1(y)  1, where
the maximum d1(y) = 1 indicates perfect nesting. No-
tice that the equations for g1 and g3 depend on Nf due
to the involvement of interpatch internal fermion loops.
The patch number Np is present in equations for g3 and
g4 since the internal Umklapp scattering contributes.
These equations reduce to the square lattice equations
of Ref. 25–27 when we set Np = 2, Nf = 2, and to
the hexagonal lattice equations of Ref. 23 when we set
Np = 3, Nf = 2.
We analyze the RG equations with the setup of bare

weak repulsions g1, g2, g3, g4 � 0 and finite nesting
d1(y) > 0. Motivated by twisted bilayer graphene, the
numbers Nf = 4 and Np = 3 are chosen [18, 20]. Note
that along the RG flow, g2 increases monotonically and
diverges at a certain scale yc. Meanwhile, g3 remains pos-
itive semidefinite, while g4 decreases monotonically and
may change sign along the RG flow. The behavior of g1
depends on Nf . For Nf = 2, g1 is positive semidefinite,
but for Nf > 2 it can change sign. A detailed analysis
of the RG equations following Ref. 23 is presented in the
Supplement, and reveals that for any choice of repulsive
initial interactions, there is a unique fixed trajectory i.e.
as the system flows to strong coupling, the ratios of the
couplings tend to specific values.
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FIG. 2. (a) Brillouin zone of hexagonal lattices (black solid)
with inscribed Fermi surface (green dashed) at Van Hove fill-
ing. The patches are set on the Fermi surface corners M↵’s.
(b) Reduced Brillouin zone in the loop current phase. (c) Four
independent interactions in the low energy theory. Solid and
dashed lines indicate fermions at di↵erent patches. (d) Test
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channels, with (e) the corresponding susceptibilities.
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where t0 represents higher neighbor hoppings (third
neighbor or higher for honeycomb lattice, second neigh-
bor or higher for square or triangular lattices).
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ties, a parquet RG is necessary for the analysis of the
low energy theory. The calculations are carried out fol-
lowing Ref. 23, making the standard ‘fast parquet’ ap-
proximation which focuses on the channels with the most
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determines the nesting degree 0  d1(y)  1, where
the maximum d1(y) = 1 indicates perfect nesting. No-
tice that the equations for g1 and g3 depend on Nf due
to the involvement of interpatch internal fermion loops.
The patch number Np is present in equations for g3 and
g4 since the internal Umklapp scattering contributes.
These equations reduce to the square lattice equations
of Ref. 25–27 when we set Np = 2, Nf = 2, and to
the hexagonal lattice equations of Ref. 23 when we set
Np = 3, Nf = 2.
We analyze the RG equations with the setup of bare

weak repulsions g1, g2, g3, g4 � 0 and finite nesting
d1(y) > 0. Motivated by twisted bilayer graphene, the
numbers Nf = 4 and Np = 3 are chosen [18, 20]. Note
that along the RG flow, g2 increases monotonically and
diverges at a certain scale yc. Meanwhile, g3 remains pos-
itive semidefinite, while g4 decreases monotonically and
may change sign along the RG flow. The behavior of g1
depends on Nf . For Nf = 2, g1 is positive semidefinite,
but for Nf > 2 it can change sign. A detailed analysis
of the RG equations following Ref. 23 is presented in the
Supplement, and reveals that for any choice of repulsive
initial interactions, there is a unique fixed trajectory i.e.
as the system flows to strong coupling, the ratios of the
couplings tend to specific values.
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The fixed trajectory may be determined by making the
ansatz

gi =
Gi

yc � y
. (3)

Substitution into the RG equations yields a set of alge-
braic equations, which may be straightforwardly solved.
Discarding the solutions that cannot be accessed start-
ing from repulsive interactions, and the solutions that
are unstable to perturbations, we are left with a unique
set of critical interactions Gi’s. For single layer graphene
Nf = 2, the fixed trajectories manifest �G4 > G3 >
G2 > G1 = 0 at all nesting 0  d1  1 [23]. However,
di↵erent features are observed for Nf = 4 [see Fig. 3(a)].
While �G4 decreases toward zero with increasing nest-
ing, �G1 increases and becomes the largest among all
interactions at perfect nesting d1 = 1. These features
indicate a switch between di↵erent fixed trajectories at
certain nesting. A transition between di↵erent instabili-
ties may also occur accordingly.

III. INSTABILITY ANALYSIS

To determine the leading instability as the system flows
to strong coupling, we introduce the test vertices [35–37]

�H =
X

(� † (†) +H.c.). (4)

The test vertex that grows most rapidly under RG rep-
resents the leading instability. We focus on the channels
with ln2 divergent susceptibilities - test vertices in chan-
nels with only ln divergent susceptibilities do not grow
strong before the problem flows to strong coupling [23].
This corresponds to a focus on superconducting and den-
sity wave instabilities [Fig. 2(d)]. In the superconducting
channels, the test vertices take the form �↵ †

↵� 
†
↵�0 with

� > �0. These flavor pairings exhibit the antisymmetric
SU(Nf ) irreducible representations. For the density wave

channels, interpatch particle hole pairings �↵� 
†
�� ↵�0

with ↵ > � are introduced. Several kinds of density wave
channels can be identified. For the real and imaginary
charge density wave (r/iCDW) channels, a summation
over all uniform flavor pairings

P
�  

†
↵� �� manifests the

trivial SU(Nf ) irreducible representation. For the flavor
density wave (r/iFDW) channels, the remaining SU(Nf )
irreducible representations are relevant.
The corrections to test vertices along the RG flow are

described by a set of di↵erential equations. The so-
lutions indicate the divergent scalings of test vertices
�I ⇠ (yc � y)�I along the fixed trajectories. Each in-
stability channel I exhibits an exponent �I as a linear
combination of critical interactions Gi’s

�sSC = (Np � 1)G3 +G4, �dSC = G4 �G3,

�r/iFDW = �d1(G2 ±G3),

�r/iCDW = d1[NfG1 �G2 ± (Nf � 1)G3].

(5)

To determine the leading instability, we evaluate the sus-
ceptibilities in these instability channels. The corrections
to susceptibilities are described by d�I/dy ⇠ |�I |2 as il-
lustrated in Fig. 2(e), implying the scaling

�I ⇠ (yc � y)↵I (6)

with the susceptibility exponent

↵I = 2�I + 1. (7)

Notice that an instability can emerge only when the cor-
responding susceptibility diverges ↵I < 0 [36, 37]. The
leading instability is determined by the most negative
susceptibility exponent, since the corresponding suscep-
tibility diverges the most.

The susceptibility exponents in the two orbital model
Nf = 4 are presented in Fig. 3(b). The phase diagram
exhibits two di↵erent phases at di↵erent nesting regimes.
In the low nesting regime, the d-wave superconductivity
is dominant as in the single layer graphene Nf = 2. How-
ever, as the nesting degree increases, the imaginary CDW
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set of critical interactions Gi’s. For single layer graphene
Nf = 2, the fixed trajectories manifest �G4 > G3 >
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While �G4 decreases toward zero with increasing nest-
ing, �G1 increases and becomes the largest among all
interactions at perfect nesting d1 = 1. These features
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ties may also occur accordingly.
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The test vertex that grows most rapidly under RG rep-
resents the leading instability. We focus on the channels
with ln2 divergent susceptibilities - test vertices in chan-
nels with only ln divergent susceptibilities do not grow
strong before the problem flows to strong coupling [23].
This corresponds to a focus on superconducting and den-
sity wave instabilities [Fig. 2(d)]. In the superconducting
channels, the test vertices take the form �↵ †
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↵�0 with

� > �0. These flavor pairings exhibit the antisymmetric
SU(Nf ) irreducible representations. For the density wave
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trivial SU(Nf ) irreducible representation. For the flavor
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described by a set of di↵erential equations. The so-
lutions indicate the divergent scalings of test vertices
�I ⇠ (yc � y)�I along the fixed trajectories. Each in-
stability channel I exhibits an exponent �I as a linear
combination of critical interactions Gi’s
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To determine the leading instability, we evaluate the sus-
ceptibilities in these instability channels. The corrections
to susceptibilities are described by d�I/dy ⇠ |�I |2 as il-
lustrated in Fig. 2(e), implying the scaling

�I ⇠ (yc � y)↵I (6)

with the susceptibility exponent

↵I = 2�I + 1. (7)

Notice that an instability can emerge only when the cor-
responding susceptibility diverges ↵I < 0 [36, 37]. The
leading instability is determined by the most negative
susceptibility exponent, since the corresponding suscep-
tibility diverges the most.

The susceptibility exponents in the two orbital model
Nf = 4 are presented in Fig. 3(b). The phase diagram
exhibits two di↵erent phases at di↵erent nesting regimes.
In the low nesting regime, the d-wave superconductivity
is dominant as in the single layer graphene Nf = 2. How-
ever, as the nesting degree increases, the imaginary CDW
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ing from repulsive interactions, and the solutions that
are unstable to perturbations, we are left with a unique
set of critical interactions Gi’s. For single layer graphene
Nf = 2, the fixed trajectories manifest �G4 > G3 >
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leading instability is determined by the most negative
susceptibility exponent, since the corresponding suscep-
tibility diverges the most.

The susceptibility exponents in the two orbital model
Nf = 4 are presented in Fig. 3(b). The phase diagram
exhibits two di↵erent phases at di↵erent nesting regimes.
In the low nesting regime, the d-wave superconductivity
is dominant as in the single layer graphene Nf = 2. How-
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state, also known as the loop current state, is enhanced.
Above certain nesting, the loop current state overcomes
the d-wave superconductivity and becomes the leading
instability. Notice that such transition does not occur
in the single layer graphene, where the d-wave supercon-
ductivity dominates at all nesting. The transition in two
orbital model can be attributed to the enhanced internal
fermion loop supported by extra fermion flavors. Later
analysis identifies the loop current phase as a gapped
quantum anomalous Hall insulator (QAHI) [2, 38], and
the superconductor as a chiral d+ id superconductor.

If we assume that higher neighbor hoppings are weak
due to the large Moiré supercell, then the nesting param-
eter d1 is controlled primarily by doping away from the
saddle point. We therefore expect that close to the Van
Hove point, the system will be a (chiral) QAHI, which
will give way upon doping to a (chiral) d+ id supercon-
ductor. This leads to the phase diagram in Fig. 1.

We briefly discuss the results for larger flavor number
Nf > 4 [39]. In the large flavor regime, the critical in-
teractions Gi reduce as N�1

f . This reduction implies the
vanishing of most instabilities at finite nesting, including
the d+id superconductivity. However, the QAHI remains
robust due to a balancing factor Nf in the susceptibil-
ity exponent. Therefore, the transition nesting decreases
with increasing flavor number, indicating an expansion
of QAHI in the doping phase diagram. This clearly re-
veals the essential role of flavor degeneracy in stabilizing
a (chiral) insulating phase on the hexagonal lattices.

IV. THE ORDERED STATES ARE CHIRAL

We have identified the leading instabilities using par-
quet RG as an imaginary CDW (loop current) state at
Van Hove filling, which gives way upon doping to a d-
wave superconducting state. However, the imaginary
CDW channel is triply degenerate (order can develop
along any of the three nesting momenta Q↵’s), whereas
the superconducting channel is doubly degenerate [23].
We now determine the lifting of these degeneracies, start-
ing with the loop current phase.

For the loop current channel, there are three potential
order parameters i�̃↵ ⇠ iImh †

� �i at nesting momenta
Q↵ = M� � M� . The phase of the order parameters
is fixed because the density wave is commensurate with
the lattice. A natural question then arises as what con-
figuration is favored when the ordered phase develops
at low temperature. In the loop current phase, the com-
mensurate momenta 2Q = 0 implies an enlarged quadru-
pled unit cell and a reduced Brillouin zone with halved
lengths [Fig. 2(b)]. The noninteracting band structure
is obtained by a folding of the original bands. Three
nodal lines connecting between opposite edge centers
±M0

↵ = ±M↵/2’s constitute the Fermi surface. A cross-
ing occurs at the zone center 0, leading to a triply degen-
erate quadratic band crossing point (QBCP). The d-wave
structures of original saddle points M↵’s are manifested

(a)

(b)

FIG. 4. Real space configuration of quantum anomalous
Hall insulator on the hexagonal lattices, showing pattern of
fluxes through the real space quadrupled unit cell. For both
(a) triangular and (b) honeycomb lattices, the ratio of �3�
and � fluxes is 1 : 3 in each quadrupled unit cell, and the net
flux is zero.

at this point. Whenever an order develops |�̃| > 0, the
zone center 0 along with the nodal lines are gapped out.
Meanwhile, the double degeneracy at each edge center
M0

↵ is broken only by the corresponding order �̃↵k 6= 0.
A simultaneous ordering at all nesting momenta, known
as a 3Q state, allows to gap the entire Fermi surface,
and is expected to maximize the ordering energy. (In
the Supplement we rigorously show this by means of a
Landau-Ginzburg analysis, following Ref. 40). Four in-
equivalent channels feature identical ordering at all nest-
ing momenta (�̃, �̃, �̃), (�̃, �̃,��̃), (�̃,��̃, �̃), and
(��̃, �̃, �̃). In real space, the loop currents give rise
to a pattern of fluxes through the quadrupled unit cell
illustrated in Fig. 4 [38].

The 3Q loop current state breaks various symmetries.
A universal breakdown of translational symmetry occurs
for all density waves. In addition, a 4 translational sym-
metry breaking occurs in the 3Q state manifold [40, 41].
Loop currents can also break time reversal symmetry. For
1Q and 2Q states, time reversal symmetry is present up
to a translation along nesting momenta without order-
ing. However, there is no eligible translation in the 3Q
state, and time reversal symmetry is broken inevitably.
Accordingly, the 3Q loop current state manifests itself
as a (chiral) Chern insulator [38], exhibiting a quantum
Hall e↵ect without external magnetic field. The nontriv-
ial topological features can be understood as the legacy of
noninteracting QBCP with d-wave structure [38, 42, 43].

Meanwhile, in the d-wave superconducting channel,
two degenerate patch orders (�/

p
6)(2,�1,�1) and

(�/
p
2)(0, 1,�1) are present. Previous work on single

layer graphene [23] has revealed that a d + id structure
�(1, exp[±2⇡/3], exp[⌥2⇡/3]) minimizes the free energy.
The order parameter exhibits a winding around the Fermi
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We show that the large orbital degeneracy inherent in Moiré heterostructures naturally gives rise
to a ‘high-Tc’ like phase diagram with a chiral twist - wherein an exotic quantum anomalous Hall in-
sulator phase is flanked by chiral d+ id superconducting domes. Specifically, we analyze repulsively
interacting fermions on hexagonal (honeycomb or triangular) lattices near Van Hove filling, with an
SU(Nf ) flavor degeneracy. This model is inspired by recent experiments on graphene Moiré het-
erostructures. At this point, a nested Fermi surface and divergent density of states give rise to strong
(ln2) instabilities to correlated phases, the competition between which can be controllably addressed
through a combination of weak coupling parquet renormalization group and Landau-Ginzburg anal-
ysis. For Nf = 2 (i.e. spin degeneracy only) it is known that chiral d + id superconductivity is
the unambiguously leading weak coupling instability. Here we show that Nf > 2 leads to a richer
(but still unambiguous and fully controllable) behavior, wherein at weak coupling the leading in-
stability is to a fully gapped and chiral Chern insulator, characterized by a spontaneous breaking
of time reversal symmetry and a quantized Hall response. Upon doping this phase gives way to a
chiral d + id superconductor. Meanwhile, a similar analysis on the square lattice predicts a phase
diagram in which (for Nf > 2) a gapped phase with ‘loop current’ order gives way upon doping to a
nodal d-wave superconductor. Our work suggests that graphene Moiré heterostructures are natural
platforms for realizing exotic chiral states of correlated matter.

I. INTRODUCTION

Chiral phases of quantum matter spontaneously break
time reversal symmetry and exhibit a wealth of fascinat-
ing properties, including quantized Hall e↵ects and opti-
cal activity, that make them uniquely interesting for both
fundamental and technological reasons [1–3]. While in-
sulating chiral phases are believed to have been found in
magnetic topological insulators [4], and superconducting
chiral phases may have been observed in various stron-
tium based materials [5, 6], the search is still on for a
system which can be controllably tuned between insulat-
ing and superconducting chiral phases. Meanwhile on the
theory level, the search is still on for general principles
regarding how to stabilize chiral phases of matter, par-
ticularly in systems of correlated electrons. In this work,
we show that graphene Moiré heterostructures, a system
of choice for modern nanoscience, should provide a ma-
terial platform that can be controllably tuned between
chiral insulating and superconducting phases. Our work
also provides insights into how to stabilize chiral phases
in systems of correlated electrons.

The study of correlated electrons has been a central
theme of condensed matter research for decades. A cen-
tral open problem in this field is understanding the phase
diagram of the cuprate high-Tc superconductors [7], in
which a (non-chiral) insulating phase is flanked by domes
of (nodal) d-wave superconductor. The whole phase di-
agram is widely believed to originate from a microscopic
model of repulsively interacting fermions [7]. Recently
a new direction has been opened in this field by ex-
periments on graphene Moiré heterostructures, such as
twisted bilayer graphene [8–10], or ABC trilayer graphene
on hexagonal boron nitride [11]. In these systems there
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FIG. 1. Phase diagram for repulsively interacting fermions
on hexagonal lattices near Van Hove filling with SU(Nf ) flavor
symmetry, Nf > 2. A quantum anomalous Hall insulator
dominates near Van Hove filling µ = 0. The state arises from
a chiral 3Q loop current order with ordering at all nesting
momenta. Upon doping this gives way to a chiral d + id
superconductor. The phase of the order parameter winds by
±4⇡ around the Fermi surface, where ✓ = ±2⇡/3 is defined.

arises a superlattice potential, such that the low energy
physics in the reduced Brillouin zone is described by a
system of relatively flat bands with Berry curvature [12–
17], and with a large flavor degeneracy [18–22]. The
Fermi level appears to be close to a Van Hove singu-
larity. Interactions then drive the system into various
correlated phases, in a system with unprecedented ex-
perimental control. Furthermore, the experimentally ob-
served phase diagram [9] is reminiscent of ‘high-Tc’, with



Experimental status?

•  Sharpe…Goldhaber-Gordon (1901.03520)‒ 
signatures of Hall conductance at zero field 
(not quantized)

• Weckbecker…Shallcross (1901.04712)‒ 
signatures of flux order (current loops)



On square lattice

•  Revisit square lattice with SU(N) flavor

•  Recall: N=2 AF and d-SC degenerate at 
leading log order

• N>2: Unique leading instability to (non-
chiral) staggered flux state

•  Gives way upon doping to nodal d-SC



Conclusions
•  Close to Van Hove filling, with nested FS, 

weak coupling can give access to rich phase 
diagram with enhanced energy scales

•  Parquet RG is a good approach in this 
regime

•  Flavor degeneracy in Moire systems makes 
an crucial difference ‒ favors flux ordered 
states



Conclusions II

• On hexagonal lattices, leading weak 
coupling instability near VHS is to Chern 
insulator exhibiting QAH effect without 
magnetic order

• On doping, gives way to chiral 
superconductor



A chiral phase diagram
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We show that the large orbital degeneracy inherent in Moiré heterostructures naturally gives rise
to a ‘high-Tc’ like phase diagram with a chiral twist - wherein an exotic quantum anomalous Hall in-
sulator phase is flanked by chiral d+ id superconducting domes. Specifically, we analyze repulsively
interacting fermions on hexagonal (honeycomb or triangular) lattices near Van Hove filling, with an
SU(Nf ) flavor degeneracy. This model is inspired by recent experiments on graphene Moiré het-
erostructures. At this point, a nested Fermi surface and divergent density of states give rise to strong
(ln2) instabilities to correlated phases, the competition between which can be controllably addressed
through a combination of weak coupling parquet renormalization group and Landau-Ginzburg anal-
ysis. For Nf = 2 (i.e. spin degeneracy only) it is known that chiral d + id superconductivity is
the unambiguously leading weak coupling instability. Here we show that Nf > 2 leads to a richer
(but still unambiguous and fully controllable) behavior, wherein at weak coupling the leading in-
stability is to a fully gapped and chiral Chern insulator, characterized by a spontaneous breaking
of time reversal symmetry and a quantized Hall response. Upon doping this phase gives way to a
chiral d + id superconductor. Meanwhile, a similar analysis on the square lattice predicts a phase
diagram in which (for Nf > 2) a gapped phase with ‘loop current’ order gives way upon doping to a
nodal d-wave superconductor. Our work suggests that graphene Moiré heterostructures are natural
platforms for realizing exotic chiral states of correlated matter.

I. INTRODUCTION

Chiral phases of quantum matter spontaneously break
time reversal symmetry and exhibit a wealth of fascinat-
ing properties, including quantized Hall e↵ects and opti-
cal activity, that make them uniquely interesting for both
fundamental and technological reasons [1–3]. While in-
sulating chiral phases are believed to have been found in
magnetic topological insulators [4], and superconducting
chiral phases may have been observed in various stron-
tium based materials [5, 6], the search is still on for a
system which can be controllably tuned between insulat-
ing and superconducting chiral phases. Meanwhile on the
theory level, the search is still on for general principles
regarding how to stabilize chiral phases of matter, par-
ticularly in systems of correlated electrons. In this work,
we show that graphene Moiré heterostructures, a system
of choice for modern nanoscience, should provide a ma-
terial platform that can be controllably tuned between
chiral insulating and superconducting phases. Our work
also provides insights into how to stabilize chiral phases
in systems of correlated electrons.

The study of correlated electrons has been a central
theme of condensed matter research for decades. A cen-
tral open problem in this field is understanding the phase
diagram of the cuprate high-Tc superconductors [7], in
which a (non-chiral) insulating phase is flanked by domes
of (nodal) d-wave superconductor. The whole phase di-
agram is widely believed to originate from a microscopic
model of repulsively interacting fermions [7]. Recently
a new direction has been opened in this field by ex-
periments on graphene Moiré heterostructures, such as
twisted bilayer graphene [8–10], or ABC trilayer graphene
on hexagonal boron nitride [11]. In these systems there
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FIG. 1. Phase diagram for repulsively interacting fermions
on hexagonal lattices near Van Hove filling with SU(Nf ) flavor
symmetry, Nf > 2. A quantum anomalous Hall insulator
dominates near Van Hove filling µ = 0. The state arises from
a chiral 3Q loop current order with ordering at all nesting
momenta. Upon doping this gives way to a chiral d + id
superconductor. The phase of the order parameter winds by
±4⇡ around the Fermi surface, where ✓ = ±2⇡/3 is defined.

arises a superlattice potential, such that the low energy
physics in the reduced Brillouin zone is described by a
system of relatively flat bands with Berry curvature [12–
17], and with a large flavor degeneracy [18–22]. The
Fermi level appears to be close to a Van Hove singu-
larity. Interactions then drive the system into various
correlated phases, in a system with unprecedented ex-
perimental control. Furthermore, the experimentally ob-
served phase diagram [9] is reminiscent of ‘high-Tc’, with
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