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of robust control, with other relevant conceptual and theoretical
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mathematics. Familiar and accessible case studies are used to illus-
trate concepts of robustness, organization, and architecture (mod-
ularity and protocols) that are central to understanding complex
networks. These essential organizational features are hidden dur-
ing normal function of a system but are fundamental for under-
standing the nature, design, and function of complex biologic and
technoloqic systems.
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Fig. 1. The inverse optics problem. (A) The conflation of illumination, re-
flectance, and transmittance in retinal images. Many combinations of these
physical characteristics of the world can generate the same retinal stimulus.
(B) The conflation of physical geometry in images. The same image can be
generated by objects of different sizes, at different distances from the ob-
server, and in different orientations. (C) The conflation of speed and di-
rection in images of moving objects. The same projected motion on the
retina can be generated by different objects with various orientations
moving in different directions and at different speeds in the physical world.
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“Laws” and architectures

* Theory of hard limits, constraints,... (“laws” )
 Theory of “architecture”?

— From platforms to
— “systems of systems” to
— Architecture

e Case studies: Internet, turbulence, smartgrid,
cell biology, wildfire ecology, earthquakes, stat
mech, brain architecture, UAVS5, ...
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Abstract—There exists a widely recognized need to better un-
derstand and manage complex **systems of systems,” ranging from
biology, ecology, and medicine to network-centric technologies.
This is motivating the search for universal laws of highly evolved
systems and driving demand for new mathematics and methods
that are consistent, integrative, and predictive. However, the the-
oretical frameworks available today are not merely fragmented
but sometimes contradictory and incompatible. We argue that
complexity arises in highly evolved biological and technological
systems primarily to provide mechanisms to create robustness.
However, this complexity itself can be a source of new fragility,
leading to “‘robust yet fragile” tradeoffs in system design. We
focus on the role of robustness and architecture in networked
infrastructures, and we highlight recent advances in the theory
of distributed control driven by network technologies. This view
of complexity in highly organized technological and biological sys-
tems is fundamentally different from the dominant perspective in
the mainstream sciences, which downplays function, constraints,
and tradeoffs, and tends to minimize the role of organization and
design.

Index Terms—Architecture, complexity theory, networks, opti-
mal control, optimization methods, protocols.

other complex engineering systems, but much of advanced
technology has, if anything, made things worse. Computer-
based simulation and rapid prototyping tools are now broadly
available and powerful enough that it is relatively easy to
demonstrate almost anything, provided that conditions are
made sufficiently idealized. We are much better at designing,
mass-producing, and deploying network-enabled devices than
we are at being able to predict or control their collective be-
havior once deployed in the real world. The result is that, when
things fail, they often do so cryptically and catastrophically.
The growing need to understand and manage complex sys-
tems of systems, ranging from biology to technology, is creating
demand for new mathematics and methods that are consistent
and integrative. Yet, there exist fundamental incompatibilities
in available theories for addressing this challenge. Various
“new sciences” of “complexity” and “networks™ dominate the
mainstream sciences [3] but are at best disconnected from
medicine, mathematics, and engineering. Computing, commu-
nication, and control theories and technologies flourish but
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What’s the difference?
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Human complexity

Robust Yet Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair ® Cancer
© Microbe symbionts ® Parasites, infection
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_.oA engineering systems, but much of advanced
.wlogy has, if anything, made things worse. Computer-
based simulation and rapid prototyping tools are now broadly
available and powerful enough that it is relatively easy to
demonstrate almost anything, provided that conditions are
made sufficiently idealized. We are much better at designing,
mass-producing, and deploying network-enabled devices than
we are at being able to predict or control their collective be-
havior once deployed in the real world. The result is that, when
things fail, they often do so cryptically and catastrophically.
The growing need to understand and manage complex sys-
tems of systems, ranging from biology to technology, is creating
demand for new mathematics and methods that are consistent
and integrative. Yet, there exist fundamental incompatibilities
in available theories for addressing this challenge. Various
“new sciences” of “complexity” and “networks™ dominate the
mainstream sciences [3] but are at best disconnected from
medicine, mathematics, and engineering. Computing, commu-
nication, and control theories and technologies flourish but
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Control Comms
Bode Shannon

« Each theory ~ one dimension

- * Important tradeoffs across
frAa'glle? dimensions

* Progress is encouraging but...
slow?
? i
wasteful ? Carnot
Turing Boltzmann
Godel Heisenberg
Compute Physics

Einstein



Conservation
“laws”?

fragile

wasteful
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A streamwise constant model of turbulence
in plane Couette flow
D. F. GAYMEIT, B. J. MCKEONl,

A. PAPACHRISTODOULOUE, B. BAMIEH?
AND J. C. DOYLE!

Turbulence




X

Coherent structures




“turbulence is a
highly nonlinear
phenomena”

Blunted turbulent U
velocity profile W

Turbulent

Laminar
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PR P ~ Complexity:
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Simple
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Fragile Trreducibile?
nonlinear

nonlinear



Physics Of Fluids (2011) PHYSICS OF FLUIDS 23, 065108 (2011)

Amplification and nonlinear mechanisms in plane Couette flow

Dennice F. Gayme,' Beverley J. McKeon,' Bassam Bamieh,? Antonis Papachristodoulou,®
and John C. Doyle®

Coherent structures and turbulent drag

high-speed 3D coupling
region upflow Blunted turbulent U

1 low speed velocity profile w
downflow streak

|
U u U Laminar

Turbulent
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Theory + biology case study
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Sharpen Case studies

hard bounds
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RESEARCHARITICLE ‘

wvate kinase (PK) produces g + 1 molecules of v

for a net (normalized) production of one unit,

= = = = = which s consumed i a final reaction modding
Glycolytic Oscillations and Limits on s we or ame i gycosis o ate

. = molecules are consumed upstream and four are

Robust Efficiency prodwed dowmres, which omlizs 0. - |
(each y molecule produces two downstream) with

kamene exponent a = 1 To highhght essential
trade-ofts with the simplest possible analysis, we
nommalize the concentrabom such that the un-
perturbed (& = 0) steady states are ¥ = 1 and
¥ = 1/k [the system can have one additional
deady state, which is unstable when (1, k) 15 sta-
ble]. [See the supporting onlme materal (S0M)
part ). The basal rate of the PFK reaction and
the consumption rate have been normalized to
1 (the 2 in the numerator and feedback coefh-

Fiona A. Chandra,’* Gentian Buzi,® John C. Doyle®

Both engineering and evolution are constrained by trade-offs between efficiency and robustness,
but theory that formalizes this fact is limited. For a simple two-state model of glycolysis, we
explicitly derive analytic equations for hard trade-offs between robustness and efficiency with
oscillations as an inevitable side effect. The model describes how the trade-offs arise from
individual parameters, including the interplay of feedback control with autocatalysis of network
products necessary to power and catalyze intermediate reactions. We then use control theory to
prove that the essential features of these hard trade-off "laws” are universal and fundamental, in
that they depend minimally on the details of this system and generalize to the robust efficiency cients of the reacticns come from these normaliza:
of any autocatalytic network. The theory also suggests worst-case conditions that are consistent L ) . ' o
o f e . tions). Our results hold for more general systems
Mth lmm"' EIPEHH'IEFI'E. i Aimsaimmad halassr aand ia OORT et dtha aantisis

Chandra, Buzi, and Doyle

AYAAAS

www.sciencemag.org SCIENCE VOL 333 8 JULY 2011



Theory + biology case study

Universal issues

Longstanding mystery (century? millennia?)
Accessible, components “well-known”
Evolution + physiology + “CDS/CME”
Broadly relevant

Science paper in press (w/ Fiona Chandra,
Genti Buzi)

Extreme responses typical



Glycolytic oscillations

Hard tradeoffs between
1. Fragility (disturbance rejection)

2. Amount (of enzymes) } Metabolic

3. Complexity (of enzymes) overhead

* Most ubiquitous/studied “circuit” in
science/engineering

* New insights and experiments



Fragility

Hard tradeoffs between

1. Fragility (disturbance rejection)
2. Amount (of enzymes)

3. Complexity (of enzymes)

'comple\

>

Metabolic overhead




Absorbance

(a)
Fig. 2. Dependence of pattern on flow rate. Experimental time

Absorbance

@
&
-
m
O
| —
o
@
e
<

Absorbance

" T tion becomes longer (b—d). and at the highest flow rate (e). the state
15 stationary.

Experiments

Absorbance

| M Nielsen, PG Sorensen, F Hynne, H-G

Busse. Sustained oscillations in glycolysis:

an experimental and theoretical study of

Absorbance

s CN @ OtIC aNd complex periodic behavior
and of quenching of simple oscillations.
Biophys Chem 72:49-62 (1998).

0 0.5 1 15
t'hour
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tandaar Imulation v=0.03
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Figure S4. Simulation of two state model (S7.1) qualitatively recapitulates
experimental observation from CSTR studies [5] and [12]. As the flow of material
in/out of the system is increased, the system enters a limit cycle and then
stabilizes again. For this simulation, we take g=a=Vm=1, k=0.2, g=1, u=0.01, h=2.5.



Absorbance Absorbance Absorbance Absorbance

Absorbance
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W....mmm.f.}.ﬁ ydel (§7.1) qualitatively recapitulates
0.5 1 studies [5] and [12]. As the flow of material
- system enters a limit cycle and then
% 05 : 15 > ve take g=a=Vm=1, k=0.2, g=1, u=0.01, h=2.5.
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Z and p functions of
enzyme complexity
and amount

Fragility

simple
enzyme

complex enzyme

Enzyme amount



Linearized pendulum

S

on a cart
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Translation

* Autocatalytic €—>» =~ Up
* Complex vs <€—> * > eyes Vs
simple enzymes no eyes

m

<—|——>



1% :
;!In‘S(ja))‘da)ZO

Easy, even with eyes closed
No matter what the length



Gratuitous fragility
versus
fragile robustness

TIn‘S(ja))‘da)Z 0
0

> = Gratuitous fragility
= = Fragile robustness



Up is hard for shorter lengths

1 :
;E‘;In‘S(ja))‘da)Z‘p‘

p=2zJ1+r = \/%(1+ r)

P small = L large

Down easy, even with
* eyes closed
« all lengths




Fragility

This is a cartoon,

o [
L

1% . but can be mad
Z[In|s(jo)do=|p|
7T 0

Too

fragile Why oscillations?

Side effects of
hard tradeoffs

complex




—jln‘S( a))‘( jdcoZln Z+p|
2° + Z—p
Eyes closed
g m
Z=,]— =ZN1+1r r=—
(i pondit g v
p+z_xﬂ+r+1
P—z J1+r -1

Want r and z large (but p small).



/ +
Theorem —jln\s( a))‘ dw > In P
2+’ Z—p
up, no eyes
N hopeless
Fragility
|2t p‘
Z—p
up + eyes This is a cartoon,
but can be made
precise.
down




Translation

* Autocatalytic *~ Up
* Complex vs * ~ eyes Vs
simple enzymes no eyes

m

<—|——>



Theorem —jln\s( a))‘(z . jda)zﬁn §+E]
D> _

up-eyes
Fragility Different
N “architectures”
~ 0
\ X Q
{I L+ pH N 1/@&
n S

£ b RN ~ This is a cartoon,
’ e - but can be made
T~ ~ precise.




Theorem —jln\s( a))‘(z . jda)zﬁn §+g]
> _

Fragility

up-eyes

Different

simple“architectures”
enzyme

This is a cartoon,

~ o - but can be made
precise.
complex enzyme

~down N |



Theorem —jln\s( a))‘(z . jda)zﬁn §+E]
D> _

Too fragile up-eyes

Fragility simple

enzyme

This is a cartoon,
but can be made
precise.




Theorem —jln\s( a))‘(z . jda)zﬁn £+ P
a)

Fragility

[.n

Why oscillations?
] Side effects of hard tradeoffs

complex enzyme

Enzyme amount

Z+p
Z=p




Z+p
Z—Pp

—jln‘S( a))‘(z — j > 1n

1

10 ' |
Fragility Biological architectures
achieve hard limits and

use complex enzymes

and networks

Z+p
Z—p

control of €nzyme leve|s
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0

100,
10" 100k 10

Enzyme amount




e Microfluidic experiments

e Yeast strain W303 grown in Ethanol

e Glucose and KCN added —anaerobic glycolysis
e NADH measured every 3 s

100

NADH

50

0 60 120 180 240 300

t ( seconds)




Architecture Good architectures
allow for effective

tradeoffs

fragile

wasteful
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100
Th = i
eorem ﬂ!ln‘S(ja))‘ —— T h

* Zand p are functions of enzyme complexity and amount
 standard biochemistry models
* phenomenological

* first principles?




What reviewers say

“If such oscillations are indeed optimal, why are they not
universally present?”

“The approach to establish universality for all biological and
physiological systems is simply wrong. It cannot be done...”

“While the notion of universality is well justified in physics, it is
perhaps not so useful in biological sciences and medicine. To
develop a set of universal principles for biological and
physiological systems is mostly likely a dream that will never be
realized, due to the vast diversity in such systems.”

“...does not seem to have an understanding or appreciation of
the vast diversity of biological and physiological systems...”

“...desire to develop rigorous framework is understandable, but
usually this can be done only by imposing a high degree of
abstraction, which would then make the model useless ...”

“... a mathematical scheme without any real connections to
biological or medical problems...”



Fragility
hard limits

e General
* Rigorous
 First principle

simple

complex

>

Overhead, waste

* Domain specific
* Ad hoc
* Phenomenological

Plugging in
domain details



Control Wiener

Comms
Bode
robust control

Kalman
e General * Fundamental multiscale physics
* Rigorous * Foundations, origins of
* First principle — noise

— dissipation

— amplification

Carnot
Boltzmann

Heisenberg

Physics



IEEE TRANS ON AUTOMATIC CONTROL,

FEBRUARY, 2011

Sandberg, Delvenne, and Doyle

http://arxiv.org/abs/1009.2830

On Lossless Approximations, the Fluctuation-Dissipation Theorem,
and Limitations of Measurements

Henrik Sandberg, Jean-Charles Delvenne, and John C. Doyle

Abstracr—In this paper, we take a control-theoretic approach
to answering some standard questions in statistical mechanics,
and vse the results to derive limitations of classical measurements.
A central problem is the relation between systems which appear
macroscopically dissipative but are microscopically lossless. We
show that a linear system is dissipative if, and only if, it can
be approximated by a linear lossless system over arbitrarily
long time intervals. Hence lossless systems are in this sense
dense in dissipative systems. A linear active system can be
approximated by a nonlinear lossless system that is charged
with initial energy. As a by-product, we obtain mechanisms
explaining the Onsager relations from time-reversible lossless
approximations, and the fluctnation-dissipation theorem from
uncertainty in the initial state of the lossless system. The results
are applied to measurement devices and are used to quantify

| I R | R | (P, [ (RS L LU IR (RN | (. T SN, A

Derivation of limitations is also at the core of physics. Well-
known examples are the laws of thermodynamics in classical
physics and the uncertainty principle in quantum mechanics
[6]-[8]. The exact implications of these physical limitations
on the performance of control systems have received little at-
tention, even though all components of a control system, such
as actuators, sensors, and computers, are built from physical
components which are constrained by physical laws. Control
engineers discuss limitations in terms of location of unstable
plant poles and zeros, saturation limits of actuators, and more
recently channel capacity in feedback loops. But how does the
amount of available energy limit the possible bandwidth of a
control system? How does the ambient temperature affect the



Bacterial cell

Huge Huge
Variety Variety




* Autocatalytic
* Complex vs
simple enzymes

Feedbacks

Autocatalysis






Catabolism

Precursors ]

Inside every cell
/ ATP
AA
Ribosomes
/\’00/_ make
rilbosomes

Ribosome

Translation: Amino acids
polymerized into proteins



Catabolism

Precursors J

AT

 Translation
 Transcription
* DNA Replication



Catabolism

Crosslayer
autocatalysis

Precursors v

Inside every cell

Enzymes




Taxis and
transport

Nutrients




Taxis and
transport

(2 Autocatalytic feedback -
Polymerization

/ Core plism, ) and complex
@8 | c RS assembly
S |35 |5
S —
N 8 N/ OAdeS
ey o
Cartershorg 5
— Trans™ @,

~10% to ~ 00

Huge
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organisms
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Other examples

Clothing
Lego
Money
Cell biology



Soft layering



— Modularity?




Given a wardrobe (set of garments)

1 << # outfits << # non-outfits

(random heaps are of garments are never outfits)



large thin

1 << # outfits << # non-outfits

(random heaps are of garments are never outfits)



large thin
1 << #toys << # non-toys



Letters and words

* O |etters: adeginorz
* 91=362,880 sequences of 9 letters
* Only “organized” is a word

1 << (# words) << (# non-words)

large thin



Shorts

Slacks




System
constraints

Hidden

Robust to variations In
« weather

e activity

e appearance requirements
e wear and tear

e cleaning



Polyester



Modularity 2.0

Garments

Xform

o

Prevents unraveling of lower layers

Xform

Xform




Outfits
1\

Garments

4N xiorm

Cloth

Hidden,
large, thin,
nonconvex




10N

/@orizontal networks of garments

Polyester

rtical decomposit

Wool  Cotton  Silk Polyester Nylon  Rayon

Horizontal networks of fibers

ﬁw



Horizontal networks of garments

RN

Cloth

Outer
Inner

Thread

Vertical decomposition

N Ay ¢ 2
Horizontal networks of 14/ bers

<




Universal strategies?

Even though Garments have
garments seem

analog/continuous

w limited access to
threads and fibers

Cloth

guantization constraints on

for robustness Thread cross-layer
Interactions

Prevents unraveling of lower layers



Functionally diverse garments

-

Diverse fabric

General .
knit, weave

purpose
machines

Diverse Thread

diverse sources



Funstionally diverse garments



Garments
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Fragilities?
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Sustainable?




Networked/embedded/layered

Controller Embedded
virtual

actuator/ Physical
sensor plant

CPU/ |
Mem

CPU/
Mem

A8
Z
(D
—t
=
o
-

aned

Acfuator
Sensor




Meta-layering of cyber-phys control

Controller

Embedded
virtual
actuator/
sensor

Physical
plant




Layered architectures

JPhysioIogy

|

Organs

\\ Cells M
%Y




Physiology
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Meta-layers

Cortex

Prediction

Goals
Actions

N

/
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Which blue line is longer?



Which blue line is longer?



Which blue line is longer?



Which blue line is longer?



Which blue line is longer?



Unfortunately, we're not
sure how this all works.

Limited

scope
Z




Shorts

Slacks
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Fix?
Yet Fragile

® Obesity, diabetes
What matters: ® Cancer
. Action ® Parasites, infection

] @ Autolmmune/Inflame

* Automation @® Addiction, psychosis...
* Limits 2 Epidemics, war...
o Tradeoffs é Catastrophes

é Obfuscate, amplify,...

Accident or necessity?



1 TERABYTE
A $200 HARD DRIVE

THAT HOLDS
260,000 SONGS

TH

460 TERABYTES

ALL THE DIGITAL
WEATHER

DATA COMPILED
BY THE NATIONAL
CLIMATIC DATA
CENTER

PET
AGFE

‘All models are wrong, and increasingly
you can succeed without them.”

20 TERA

PHOTOS
FACEBO

530 TERABYTES

ALL THE VIDEOS
ON YOUTUBE

THE END OF THEORY
cientists have always relied on hypothesis
and experimentation. Now, in the era of
massive data, there’s a better way.

THE END

OF THEORY

"ALL MODELS ARE WRQ)

Rimed statistician George
ox 30 years ago, and he was right. But
what choice did we have? Only mod-
els, from cosmological equations ta
theories of human behavior, seemed to
be able to consistently, if imperfectly,
explain the world around us. Until now.

abundant data, don't have to settle for
wrong models. Indeed, they don't have
to settle for models atall

Sixty years ago, digital computers
made information readable. Twenty
years ago, the Internet made it reach-
able. Ten years ago, the first search
engine crawlers made it a single data-
base. Now Google and like-minded

he Petabyte Age s different
ecause more is different. Kilobytes
were stored on floppy disks. Mega-
bytes were stored on hard disks.
Terabytes were stored in disk arrays,
Petabytes are stored in the cloud.
As we moved along that progression,
we went from the felder analogy to
the file cabinet analogy to the library
analogy to—well, at petabytes we
ran out of organizational analogies.
At the petabyte scale, information
is not a matter of simple three- and
. .

good enough. No semantic or causal
analysis is required. That's why
Google can translate languages with-
out actually "knowing” them (given
equal corpus data, Google can trans-
late Klingon into Farsi as easily as it
can translate French into German).
And why it can match ads to content
without any knowledge or assump-
tions about the ads or the content.
Speaking at the O'Reilly Emerg-
ing Technology Conference this
past March, Peter Norvig, Geogle's
research director, offered an update
ox's maxim: "All mo
g, and increasingly you
§ithot tham "

and order,
but of dimensionally agnostk

se the tether of data as something
that can be visualized in its totality. It
forces us to view data mathematically
first and establish a context for it later.
For instance, Google conquered the
advertising world with nothing more
than applied mathematics. It didn't
pretend to know anything about the
culture and conventions of advertis-
ing—it just assumed that better data,
with better analytical tools, would win
the day. And Google was right.
Google's founding philosophy is
that we don't know why this page
is better than that one: If the statis-

gfincoming linke <o ba

This is a world where massive
amounts of data and applied mathe]
matics replace every other tool

that might be brought to bear. Out
with every theory of human behavjor,
from linguistics to sociology. Forgd
taxonomy, ontology, and psycholofiy.
Who knows why people do what fhey
do? The point is they do It, and w

can track and measure it with u
edented fidelity. Wi




Save our
children

There Is a
treatment.



New words

« Peta-philia: Perverse love
of data and computation

« Peta-fop: Someone who
profits from peta-philia

 Exa-duhs: Loss of clue
from excessive peta-philia




L e Fortu nately
there seems

to be a
treatment

TTTTTTTTT
ooooooooooooo

Not yet in
widespread use
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Sharpen Case studies
hard bounds
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Layering as

Optimization Decomposition:
A Mathematical Theory of
Network Architectures

There are various ways that network functionalities can be allocated to different
layers and to different network elements, some being more desirable than others.
The intellectual goal of the research surveyed by this article is to provide a
theoretical foundation for these architectural decisions in networking.

By MUNG CHIANG, Member IEEE, STEVEN H. Low, Senior Member IEEE,
A. ROBERT CALDERBANK, Fellow IEEE, AND JOHN C. DOYLE

Chiang, Low, Calderbank, and Doyle
Vol. 95, No. 1, January 2007 | PROCEEDINGS OF THE IEEE



Layered architectures

Diverse applications

— —
- 5
MAC MAC MAC
Switch z]; Pt to Pt E Pt to Pt
S

Physical




Control “Layering as optimization”

* 10+ years of progress & impact...

robust control Static optimization — dynamic control

* Wireless, scheduling, net coding, ...
Internet

* But....

 Something is wrong architecturally

* Better protocols/control won’t fix it

optimization Design: from protocols to architectures

Compute .
operating systems



Layered architectures everywhere

Computers, Internet, software... cyber-physical?
Bacterial biosphere

Evo-devo

Brain

Lego, clothing, supply chain, ...

Useful “comparative physiology”



Layered architectures

Diverse applications

Diverse

Physical



Layered architectures

* OS allocates/shares
Diverse — diverse resources among
applications — diverse applications

« “Strict layering” crucial,
e.g. clearly separate

4 ) — Application name space
0S — Logical (virtual)
name/address space

— Physical (name/) address
space

@ « Name resolution w/in appls
« Name/addr transl X layers



Layered architectures

In programming:
No global variables

appligations

cessto In operating systems:
7 hysical Don’t cross layers

meXory?  (rings)

I.Dhyéioa.l




Problems with leaky layering

Modularity benefits are lost

 Global variables? @%$%*&!""%@&

* Poor portability of applications

* Insecurity of physical address space

* Fragile to application crashes

* No scalability of virtual/real addressing

 Limits optimization/control by duality?



IP addresses
Interfaces
(not nodes)




Global

and direct

|P_ addresses access to

Interfaces hvsical
(not nodes) o

address!

A8
\
Znaq
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Znaq

CPU/ CPU/
Mem em -




- Layered architectures

& ¢V 4£4=a &I+
Diverse applications
& —
4 ) .
0S .thtle.
diversity
\_ J

= =
& o=

— —
—¢

Diverse hardware



Layered architectures
AN

Y e S S

Diverse applications

0S “Hourglass”

Diverse hardware




Naming and addressing need to be
* resolved within layer

e translated between layers

* not exposed outside of layer

Related “issues” W
* DNS

* NATS

* Firewalls o—r—TCcp——°
* Multihoming

* Mobility

* Routing table size
» Overlays




Persistent
errors and
confusion.

Architecture
IS not graph
topology.

Architecture
facilitates
arbitrary graphs.




The “robust yet fragile™ nature of the Internet

John C. Doyle*", David L. Alderson*, Lun Li*, Steven Low*, Matthew Roughan?, Stanislav Shalunov’, Reiko Tanaka',
and Walter Willinger

*Engineering and Applied Sciences Division, California Institute of Technology, Pasadena, CA 91125; *Applied Mathematics, University of Adelaide,
South Australia 5005, Australia; Sinternet2, 3025 Boardwalk Drive, Suite 200, Ann Arbor, Mi 48108; "Bio-Mimetic Control Research Center,
Institute of Physical and Chemical Research, Nagoya 463-0003, Japan; and 'AT&T Labs-Research, Florham Park, NJ 07932

Edited by Robert M. May, University of Oxford, Oxford, United Kingdom, and approved August 29, 2005 (received for review February 18, 2005)

The search for unifying properties of complex networks is popular,  no self-loops or parallel edges) having the same graph degree
challenging, and important. For modeling approaches thatfocuson - We will say that graphs g € G(D) have scaling-degree sequer

ONAS | October 11,2005 | vol. 102 | no.41 | 14497-14502



Notices of the AMS, 2009

Mathematics and the
Internet: A Source of

Enormous Confusion
and Great Potential

Walter Willinger, David Alderson, and John C. Doyle



“New sciences” of
“complexity” and
“networks”?

wasteful

> Harg limig



“New sciences” of
“complexity”

“networks”?

* Science as pure fashion
* |deological

e Politica
* Evange
* Nontec

ical

n trumps tech

and

Noy tog,
* Edge of chaos y
* Self-organized criticality
* Scale-free “networks”
* Creation “science”
* Intelligent design
* Financial engineering
* Risk management
* “Merchants of doubt”



Modeling
the Internet
and the Web

Pratalend g 1ol Ma Oty hadl Algen TRy

WILEY

“IN's laeidly egidained, ?’
egazeglywetien, aed
censantly wrrkng
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Complexity = hard to understand, explain

“Complexity science” = persistently in error
— bionetworks: gene regulation, metabolism, PPI
— wildfires, earthquakes
— Internet, power grid

Minimal impact on technology
Diminishing impact on biology
Of concern in medicine, neuroscience
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Complex systems?

Robust Fragile

« Scale « Scale

« Dynamics * Dynamics

* Nonlinearity * Nonlinearity

* Nonequlibrium * Nonequlibrium
* Open * Open

* Feedback * Feedback

« Adaptation « Adaptation

* Intractability * Intractability

 Emergence  Emergence



Complex systems?

Robust complexity
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Architecture

Robust complexity
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“turbulence is a
highly nonlinear
phenomena”

Blunted turbulent U
velocity profile W

Turbulent

Laminar
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Irreducibility and “intelligent design™

Self-Operating Napkin

Rube Goldberg



Self-Operating Napkin

The essential
|D argument

If biology is like this, __~
then it could not have evolved

 This is actually true, and in fact...

* If biology is like this,

« then it would be too fragile to persist,

 and would need the constant intervention of
supernatural forces



Self-Operating Napkin

The flaw

Thisis a
cartoon.

* It is too fragile to actually build.

* Neither biology nor (most of) technology Is
anything like this.

« Who said otherwise? Lots of real scientists!

« Oops! (But we are too fragile and unsustainable.)



