Climate Models & Climate Sensitivity

Paul Kushner Department of Physics, University of Toronto

Infrared Cloud Image

Bony et al. 2006

Bony e $HC = \frac{100}{100} \text{ M}$ Infrared light $hv \sim 0.3 \text{ eV} \sim 7 \times 10^{-29} \text{ LHC}$ Infrared flux $\sim 240 \text{ W/m}^2 \sim 0.3 \mu \text{LHC/(m}^2 \text{ s})$ Total infrared radiance $\sim 10^{11} \text{MW} \sim 200 \text{ MLHC/s}$

Infrared Cloud Image

High Clouds

Low Clouds

Bony et al. 2006

Clear sky

Infrared Cloud Image

Extratropical Macroturbulence: Baroclinic eddies

Bony et al. 2006

Tropical Macroturbulence: Convective systems

GCMs match observed trend and interannual variations of tropical mean (ocean only) column water vapor when given the observed ocean temperatures as boundary condition

Courtesy of Brian Soden & Isaac Held

Greenhouse Trapping: 1987-1988 El Niño

Bony et al. 2006

Climate Sensitivity in Climate Models

Bony et al. 2006

Climate Sensitivity in Climate Models

Uncertainty in gain factors normally distributed. But uncertainty in climate sensitivity is right skewed.

Climate Models and Climate Sensitivity,

Earth System Schematic

Physics of Climate Change Program @ KITP '08

Context: Key quantity of interest: "climate sensitivity"

 $\left(\frac{\partial T_s}{\partial CO_2}\right)_R$, CO2: log₂[CO₂],T_s surface temperature, R = 0 radiative equilibrium.

Program themes:

- 1. "Macroturbulence"
- 2. "Clouds"
- 3. "Ecology"

Tools for cross-talk:

- 1. Global observing system & data
- 2. Quantitative numerical models
- 3. Theory

Simple Climate Model

Radiative equilibrium, blackbody: $S=L=\sigma T_e^4 \sim 240 \text{ W/m}^2$ Emission temperature: $T_e=T(Z=Z_e)\sim 255 \text{K}$ Emission height: $Z_e\sim 5 \text{ km}$.Surface temperature: $T_s=T(Z=0)\sim 288 \text{K} > T_e \cdots$ greenhouse effect (Fourier)

 $\Gamma_{rad}=a\tau/(\tau+b)$, a&b positive. τ : optical thickness from main GHGs -- H20, CO2

 $\Gamma > \Gamma_c = "g/c_p"$: atmosphere is convectively unstable.

Macroturbulence & climate questions:

What sets $T_s=T_s(x,y,z)$? What sets $\Gamma=-dT/dz$ (stratification)? How will climate change affect T_s and Γ ? Radiation, fluid dynamics, water vapor, clouds.

[Slides.]

Extratropical regime:

Well simulated by models

Theory:

"Weather": dry, quasi-horizontal, non-divergent

"baroclinic turbulence" and teleconnections (ENSO, NAO, annular modes): linear and nonlinear.

Eddies transport heat poleward, maintain jets, maintain Γ .

Jets arise from $\beta = df/dy$

Clouds and moisture passive.

Tropical regime:

Not so well simulated

Clouds and moisture active.

Highly divergent; 3-D but coherent, not fully turbulent. Convective ascent + radiative descent maintains T.

Model-based Climate Feedback Analysis:

E.g. in our simple climate model

Double CO2, keep Γ , S fixed. "ceteris paribus"

Does emission temperature Te change? No! Instead, Ze increases.

 $\Delta Z_e \sim 100$ m per CO2 doubling.

Radiative equilibrium: R=L-S=R(T_s, Γ, CO2, H20, C, I, V ...) = 0[explain symbols]

• $CO2 \rightarrow CO2 + \delta CO2, T_s \rightarrow T_s + \delta T_s$, Everything else, "E" fixed

•
$$\delta R = R(T_s + \delta T_s, CO2 + \delta CO2, E) - R(T_s, CO2, E) \approx \left(\frac{\partial R}{\partial T_s}\right)_{CO2, E} \delta T_s + \left(\frac{\partial R}{\partial CO2}\right)_{T_s, E} \delta CO2 = 0$$

•
$$\delta T_s = -\frac{\left(\frac{\partial R}{\partial T_s}\right)_{CO2,E}}{\left(\frac{\partial R}{\partial CO2}\right)_{T_s,E}}\delta CO2 = \left(\frac{\partial T_s}{\partial CO2}\right)_{R,E}\delta CO2$$

- Radiative transfer: $\frac{\partial R}{\partial CO2} = -4W/m^2$.
- σT^4 : $\frac{\partial R}{\partial T_s} = 4W/m^2 \cdot K.$ • So $\left(\frac{\partial T_s}{\partial CO2}\right)_{R,E} = 1K = \Delta_0$ "climate sensitivity", no feedbacks

Direct Feedbacks: Water Vapor, Clouds ...

"Feedback": quantity affected by δT_s and this affects R.

Direct: water vapor H20=e(T_s), de/dT_s>0, $\partial R/\partial H20|_{Ts}<0$. For variation in T_s, $H20(T_s) \rightarrow H20(T_s) + \delta H20(T_s) \approx H20(T_s) + e'(T_s)\delta T_s$

Climate sensitivity with water vapor feedback.

•
$$\left(\frac{\partial T_s}{\partial CO2}\right)_{R,E}^{H20} = \frac{\Delta_0}{1 - g_{H20}}, \text{gain: } g_{H20} = -\frac{\left(\frac{\partial R}{\partial H20}\right)_{CO2,T_s,E} e'(T_s)}{\left(\frac{\partial R}{\partial T_s}\right)_{CO2,H20,E}}$$

-ve feedback $g_{H20} < 0$
No feedback $g_{H20} = 0$
+ve feedback $g_{H20} > 0$
Runaway greenhouse $g_{H20} \ge 1$ Note: this is an inaccurate definition of a runaway greenhouse condition.
Current estimate $g_{H20} \sim 0.4$
$$\left(\frac{\partial T_s}{\partial CO2}\right)_{R,E}^{H20} = \frac{\Delta_0}{1 - g_{H20}} \sim 1.7 \text{K}$$

 $\left(\frac{\partial R}{\partial H_{20}}\right)_{CO2,T_s,E}$ <0. Radiative transfer model calculation: Critical region: tropical free troposphere (clouds).

e'(T_s)>0. Climate model calculations: Transport, clouds.

Water vapor feedback: robust, well simulated for climate variations (volcanoes, El Niño).

Climate sensitivity with cloud feedback:

Gains are additive.

•
$$\left(\frac{\partial T_s}{\partial CO2}\right)_{R,E}^{H20,C} = \frac{\Delta_0}{1 - g_{H20} - g_C}$$

- Cloud feedback gain: $g_C = -\frac{\frac{\partial R}{\partial C}\frac{\partial C}{\partial T_s}}{\frac{\partial R}{\partial T_s}}$
- $\frac{\partial R}{\partial C}$ +ve for high clouds and -ve for low clouds.
- $\frac{\partial C}{\partial T_s}$ is model dependent.
- g_C model dependent and controlled by low clouds (Pierrehumbert talk).

Biospheric feedbacks (e.g. indirect on CO2)

 $R = R(T_s, CO2)$ is independent of V but V depends on CO2.

Model for vegetation: V=f(CO2, T), $(\partial f/\partial CO2)|_T < 0$, $(\partial f/\partial T)_{CO2} > 0$?<0?

Model for CO2, given emissions A and vegetation V: CO2=CO2(A,V), $(\partial CO2/\partial A)_V > 0$, $(\partial CO2/\partial V)_A < 0$

$$\delta CO2_{\text{emitted}}$$
• $\delta CO2 = \left(\frac{\partial CO2}{\partial A}\right)_{V} \delta A + \left(\frac{\partial CO2}{\partial V}\right)_{A} \delta V$
• $\delta V = \left(\frac{\partial f}{\partial CO2}\right)_{T} \delta CO2 + \left(\frac{\partial f}{\partial T}\right)_{CO2} \delta T$
 $\delta CO2 = \frac{\delta CO2_{\text{emitted}}}{1 - g_{V}^{CO2}} \left[1 + \left(\frac{\partial CO2}{\partial A}\right)_{A} \left(\frac{\partial f}{\partial T}\right)_{CO2} \delta T\right];$
CO2 gain $g_{V}^{CO2} = \left(\frac{\partial CO2}{\partial V}\right)_{A} \left(\frac{\partial f}{\partial CO2}\right)_{T} < 0$
 $\delta T_{s} = \frac{\Delta_{0}}{1 - g_{V}^{CO2} - g_{T}^{CO2}} \delta CO2_{\text{emitted}}$
Indirect T gain $g_{T}^{CO2} = \Delta_{0} \left(\frac{\partial CO2}{\partial V}\right)_{A} \left(\frac{\partial f}{\partial T}\right)_{CO2}$

Some References:

Bony, S., R. Colman, V.M. Kattsov, R.P. Allan, C.S. Bretherton, J.-L. Dufresne, A. Hall, S. Hallegatte, M.M. Holland, W. Ingram, D.A. Randall, D.J. Soden, G. Tselioudis, and M.J. Webb, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445-3482, doi:10.1175/JCLI3819.1.

Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. In Climate Processes and Climate Sensitivity, AGU Geophysical Monograph 29, Maurice Ewing Vol. 5. J.E. Hansen and T. Takahashi, Eds. American Geophysical Union, pp. 130-163.

Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annual Review of Energy and the Environment, 25, 441-475.

Ramanathan, V. and J. A. Coakley, Jr., 1978: Climate Modeling through Radiative-Convective Models. Rev. Geophys. and Space Physics, 16: 465-490.

Roe, G.H. and M.B. Baker, 2007: Why Is Climate Sensitivity So Unpredictable? Science 318 (5850), 629. [DOI: 10.1126/science.1144735]

Torn MS and J. Harte J, 2006: Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming. Geophysical Research Letters 33:L10703, doi:10.1029/2005GL025540