Circadian rhythms:

How do cells “compute”
temperature compensation?




Circadian rhythms are
important in daily and seasonal ¥

adaptations of organisms
to their environments




Properties of circadian rhythms
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Stavanger « circadian rhythms are generated within the single cell and can occur
under constant environmental conditions (free-running conditions).

« they can be phase shifted by sudden changes in light, temperature,
drugs, etc.

« they can lock to external periodic variations such as “lights on/off” or
temperature variations. This property is called entrainment. Circadian
rhythms also show frequency-demultiplication.

e they are involved in ‘photoperiodicitiy’, i.e., the organism/cell is able to
sense a critical daylength and induce vital physiological processes,
such as flowering, hibernation, migration,...

 the circadian period is relatively unaffected by different (but constant)
temperatures. This property is called temperature compensation with
Q,, = 0.8-1.2.
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Why has temperature compensation been
so difficult to explain on a molecular basis?

Practically all physiological reactions, enzyme catalyzed
reactions, etc. are quite dependent upon temperature. Their
rates increase by a factor (Q,,) of 2-3 when temperature is
Increased by 10°C (“Van’t Hoff’s rule”). This makes it difficult
to point to a certain rule/mechanism how temperature
compensation could work.



Examples of circadian rhythms




Leaf movements under free-running conditions
(1957)

Phaseolus coccineus. Typical course of the circadian
leaf movements under constant light (weak intensity).
The phase shifts within six days by roughly 17 hours
compared to the normal day. The length of one period
is thus about 27 hours (circles in 24-hour-intervals; E.
BUNNING and M. TAZAWA, 1957).

Time lapse movie of leaf movements in
bean (Phaseolus) seedlings by Roger P.
Hangarter, Indiana University.




LUMINESCENCE

Gonyaulax bioluminescence rhythm (1957)
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Proc Natl Acad Sci U S A 1957 September 15; 43(9): 8042811,
ON THE MECHANISM OF TEMPERATURE INDEPENDENCE IN A
BIOLOGICAL CLOCK™J. Woodland Hastings and Beatrice M.
Sweeney

“The experiments reported here describe the effect
of temperature upon the luminescent rhythm. The
results suggest that temperature independence is
achieved by means of a compensation mechansism”
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Neurospora conidiation rhythm
(Pittendrigh, Bruce, Rosenzweig & Rubin: Nature, 1959)
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24°+05°C Citation from the 1959 paper:
"l The zonation of N. crasse thus is regulated by a
rhythmic phenomenon which manifests the essential
“r features of a biological clock®. The rhythm has an
innate freerunning period which is close to 24 hr.
20 | relatively independent of the temperature.
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Fig. 1. Zonationin Neurospora. Zonation of the growthin a race-

mﬁe of & prolineless strain of Neurogpora has been measured using

a densimeter to record the relative density of myeelial growth.

The time-zeale shown represents hours elapsed after transfer of

the race-tubes from white Ilﬁt g ?.im red light as deseribed in
e text




Temperature Compensation in different Neurospora
LS frequency (frq) mutants
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A mammalian clock model
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Reaction hierarchies and temperature behavior

Elementary chemical reactions
(Arrhenius equation)

Stoichiometric component processes
(Arrhenius/non-Arrhenius behavior)




A theory for temperature compensation:
g The antagonistic balance equation
u
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Multiplying Eq. 12 by 1/P and observing that d P/P = alnP, Eq.
12 can be written as

1oP  olnP JlnP )
PaT  aT T? E ( anur.;l) T RT? 2 CiE:
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Balancing Categories

I) Static balance (whole net): E/’s are constant.

i) Dynamic balance (whole net): Es are a function
of T and possibly of other parts of the net.

lil) Balanced (static or dynamic) subnets [in terms
of elementary or stoichiometric component
processes].

IvV) Robust TC: switching between stable limit cycle
and stable steady state. Only a few balancing
parameters.

V) Robust perfect adaptation: Sensor dependent
TC (with zero C/'s), as suggested in chemotaxis.






A model of the Drosophila circadian clock
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Goodwin-type model of the Neurospora circadian clock
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Androsthenes (from Thasus) observes that plants
"sleep” (325 BC)

Aamarindus indica. <




Examples of temperature compensated rhythms

(from E. Biinning: The Physiologcal Clock, Berlin, 1964)

Table 2. Periplaneta americana,
Running Activity
(BUNNING, 1958a)

Table 3. Gonyaulax polyedra,
Rhythm of Luminescence
(HAsTINGS and SWEENEY)

Temperature Length of Periods
°C hrs.
18 24 —25
19—20 24.4 + 0.1
2223 245 + 0.1
27—28 25.0 4 0.3
29 25.8 + 0.7
31 24 —27

Table 4. Phaseolus multiflorus,

Temperature Length of Perloda
°C hrs.
15.9 22.5
19 23.0
22 25.3
26.6 26.8
32 25.5

Table 5. Lizards (Lacerta sicula),

Leaf Movements

Running Activity
(HorFMANN, 1957)

(LEINWEBER)
Temperature Length of Periods
°C hrs.

15 28.3 + 0.4
20 28.0 4- 0.4
25 28.0 4 1.0

Temperature Length of Periods
°C hrs.
16 25.20
25 24.34
35 24.19




