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A quasiparticle is an “excited lump” in the many-
electron state which responds just like an ordinary 
particle. 

R.D. Mattuck

Quantum matter with quasiparticles:



The quasiparticle idea is the key reason for the many 
successes of quantum condensed matter physics:

 Fermi liquid theory of metals, insulators, semiconductors

 Theory of superconductivity (pairing of quasiparticles)

 Theory of disordered metals and insulators (diffusion and 
localization of quasiparticles)

 Theory of metals in one dimension (collective modes as 
quasiparticles)

 Theory of the fractional quantum Hall effect (quasiparticles 
which are ‘fractions’ of an electron)

Quantum matter with quasiparticles:
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• Quasiparticles are additive excitations:

The low-lying excitations of the many-body system

can be identified as a set {n↵} of quasiparticles with

energy "↵

E =

P
↵ n↵"↵ +

P
↵,� F↵�n↵n� + . . .

• Note: The electron liquid in one dimension and the fractional
quantum Hall state both have quasiparticles; however, the quasi-
particles do not have the same quantum numbers as an electron.

Quantum matter with quasiparticles:



• Quasiparticles eventually collide with each other. Such

collisions eventually leads to thermal equilibration in

a chaotic quantum state, but the equilibration takes

a long time. In a Fermi liquid, this time is of order

~EF /(kBT )2 as T ! 0, where EF is the Fermi energy.

Quantum matter with quasiparticles:



Quantum matter without quasiparticles:

• No quasiparticle decomposition

of low-lying states

• Rapid thermalization



Quantum Ising models
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For g = 0, ground state is a ferromagnet:

|Gi = |· · · """"" · · · i or |· · · ##### · · · i

For g � 1, unique ‘paramagnetic’ ground state:

|Gi = |· · ·!!!!! · · · i

where

|!i = 1p
2

(|"i+ |#i) , | i = 1p
2

(|"i � |#i)



Quantum Ising models
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FIG. 5. Non-zero temperature properties of the Ising quantum spin chain which models CoNb2O6

shown in Fig. 1. Shown are theoretical computations from the exactly solvable spin chain with
nearest-neighbor exchange. The color plot indicates the value of the (4~c/⇡k

B

)(d⇠�1/dT ), where
⇠ is the spin correlation length and c is the velocity of spin excitations; this dimensionless number
has a T dependence similar to that of the T derivative of ⌧�1

eq of non-integrable strongly-interacting
quantum critical points. Also indicated are typical spin configurations in the two low temperature
regimes. For g < g

c

, we have the ferromagnetic configurations of Eq. (1) separated by domain walls,
while for g > g

c

we have the paramagnetic state of Eq. (2) with its ‘reversed spin’ excitations; here
|!i = (| "i+ | #i)/

p
2 and | i = (| "i � | #i)/

p
2.

Given its smallest value of ⌧eq, quantum criticality realizes the perfect fluid5.

We also illustrate the similar T > 0 crossovers for the Ising chain found in CoNb2O6 in

Fig. 5. The quantum spin chain with only nearest-neighbor exchange couplings is exactly

solvable, and we plot a quantity closely related to the temperature derivative of ⌧�1
eq for

generic quantum critical points: these clearly illustrate the 3 regimes of Fig. 4, including

the central regime of quantum criticality.

The behavior in Eq. (4) can be detected in experiments by measuring various response

functions as a function of both frequency (!) and T . Then we expect6 these results to

depend only upon the single variable ~!/k
B

T . Inelastic neutron scattering experiments on

insulating compounds with spin-1/2 ions on one-dimensional and geometrically frustrated

two-dimensional lattices7, as well as metallic copper oxides8 and heavy-fermion compounds9

near the doping levels at which antiferromagnetic long-range order vanishes have revealed

that this function scales with the ratio !/T .

The transport properties of the quantum critical region also enjoy a great deal of uni-

versality. This is expected from our reasoning above, because the values of the transport

coe�cients depend on the same processes which establish local equilibrium. We mention

10

d⇠�1

dT

• In one dimension, quasiparticles exist even at the quantum

critical point: there is a non-local transformations from the

qubits to a system of free fermions.

One 
dimension



Quantum Ising models
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• In two dimensions, the “quantum critical” region provides us the first

example of a system without a quasiparticle description. This is de-

scribed by a strongly-coupled conformal field theory (CFT) in 2+1

dimensions, and dynamic properties cannot be computed accurately.

Two 
dimensions



A simple model of a metal with quasiparticles

Pick a set of random positions



Place electrons randomly on some sites

A simple model of a metal with quasiparticles



Electrons move one-by-one randomly

A simple model of a metal with quasiparticles
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Electrons move one-by-one randomly

A simple model of a metal with quasiparticles



H =
1

(N)1/2

NX

i,j=1

tijc
†
i cj + . . .

cicj + cjci = 0 , cic
†
j + c†jci = �ij

1

N

X

i

c†i ci = Q

Fermions occupying the eigenstates of a 
N x N random matrix

tij are independent random variables with tij = 0 and |tij |2 = t2

A simple model of a metal with quasiparticles



A simple model of a metal with quasiparticles

!

Let "↵ be the eigenvalues of the matrix tij/
p
N .

The fermions will occupy the lowest NQ eigen-

values, upto the Fermi energy EF . The density

of states is ⇢(!) = (1/N)

P
↵ �(! � "↵).

EF

⇢(!)



A simple model of a metal with quasiparticles

Quasiparticle

excitations with

spacing ⇠ 1/N

There are 2

N
many

body levels with energy

E =

NX

↵=1

n↵"↵,

where n↵ = 0, 1. Shown
are all values of E for a

single cluster of size

N = 12. The "↵ have a

level spacing ⇠ 1/N .

Many-body

level spacing

⇠ 2

�N



The Sachdev-Ye-Kitaev (SYK) model

Pick a set of random positions



Place electrons randomly on some sites

The Sachdev-Ye-Kitaev (SYK) model



Entangle electrons pairwise randomly

The Sachdev-Ye-Kitaev (SYK) model
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Entangle electrons pairwise randomly

The Sachdev-Ye-Kitaev (SYK) model



This describes both a strange metal and a black hole!

The Sachdev-Ye-Kitaev (SYK) model



H =
1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c
†
i c

†
jckc` � µ

X

i

c†i ci

cicj + cjci = 0 , cic
†
j + c†jci = �ij

Q =
1

N

X

i

c†i ci

Jij;k` are independent random variables with Jij;k` = 0 and |Jij;k`|2 = J2

N ! 1 yields critical strange metal.

The Sachdev-Ye-Kitaev (SYK) model

A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981))



The Sachdev-Ye-Kitaev (SYK) model

GPS:   A. Georges, O. Parcollet, and S. Sachdev, 
PRB 63, 134406 (2001)

Many-body

level spacing ⇠
2

�N
= e�N ln 2

W. Fu and S. Sachdev, PRB 94, 035135 (2016)

Non-quasiparticle

excitations with

spacing ⇠ e�Ns0

There are 2

N
many body levels

with energy E, which do not

admit a quasiparticle

decomposition. Shown are all

values of E for a single cluster of

size N = 12. The T ! 0 state

has an entropy SGPS = Ns0
with

s0 =

G

⇡
+

ln(2)

4

= 0.464848 . . .

< ln 2

where G is Catalan’s constant,

for the half-filled case Q = 1/2.
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where G is Catalan’s constant,

for the half-filled case Q = 1/2.

No quasiparticles !

E 6=
P

↵ n↵"↵
+

P
↵,� F↵�n↵n� + . . .



• Low energy, many-body density of states

⇢(E) ⇠ eNs0
sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function G(⌧) ⇠ ⌧�1/2
at

large ⌧ .

• T > 0 Green’s function has conformal invariance

G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

The Sachdev-Ye-Kitaev (SYK) model

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)
D. Stanford and E. Witten, 1703.04612

A. M. Garica-Garcia, J.J.M. Verbaarschot, 1701.06593
D. Bagrets, A. Altland, and A. Kamenev, 1607.00694   

(sinh factor is for Majorana version)



• Low energy, many-body density of states
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The Sachdev-Ye-Kitaev (SYK) model

A. Kitaev, unpublished
J. Maldacena and D. Stanford, 1604.07818
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• Low energy, many-body density of states

⇢(E) ⇠ eNs0
sinh(
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The Sachdev-Ye-Kitaev (SYK) model

A. Georges and O. Parcollet PRB 59, 5341 (1999)

(sinh factor is for Majorana version)



• Low energy, many-body density of states

⇢(E) ⇠ eNs0
sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function G(⌧) ⇠ ⌧�1/2
at

large ⌧ .

• T > 0 Green’s function has conformal invariance

G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

The Sachdev-Ye-Kitaev (SYK) model

The SYK model is holographically dual to black holes with 
AdS2 horizons, which share the properties above

S. Sachdev, PRL 105, 151602 (2010)

(sinh factor is for Majorana version)



⇣
~x

SYK and black holes

The SYK model has “dual” description

in which an extra spatial dimension, ⇣, emerges.

The curvature of this “emergent” spacetime is described

by Einstein’s theory of general relativity

Black hole
horizon

T2

SS, PRL 105, 151602 (2010)



GPS 
entropy

⇣
~x

⇣ = 1

charge
density Q

SS, PRL 105, 151602 (2010)

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

T2

The BH entropy is proportional to the size of T2, and hence the surface area of
the black hole. Mapping to SYK applies when temperature ⌧ 1/(size of T2).

SYK and black holes

S =

Z
d

4
x

p
�ĝ

✓
R̂+ 6/L2 � 1

4
F̂µ⌫ F̂

µ⌫

◆

Bekenstein-Hawking
black hole entropy



~x

⇣ = 1

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

T2

J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;                               
K. Jensen, arXiv:1605.06098; J. Engelsoy, T.G. Mertens, and H. Verlinde, arXiv:1606.03438

⇣

SL(2,R) is the isometry group of AdS2:

ds2 = (d⌧2 + d⇣2)/⇣2 is invariant under

⌧ 0 + i⇣ 0 =
a(⌧ + i⇣) + b

c(⌧ + i⇣) + d

with ad� bc = 1.

SYK and black holes
Equilibrium dynamics described by a theory with

SL(2,R) invariance, and e↵ective Schwarzian action,

S[h(⌧)], of a time reparameterization ⌧ ! h(⌧).



Thermalization

• If we start the SYK model from a random initial
state, it reaches thermal equilibrium in a time of or-
der ~/(kBT ). Note that this time is independent of
the coupling energies in the Hamiltonian.

• If we perturb a black hole, its quasi-normal modes
“ring”, and decay to thermal equilibrium in a time
of order ~/(kBTH), where TH is the Hawking tem-
perature.

• This relaxation/thermalization time, ⌧', was conjec-
tured to be the shortest possible among all many-
body quantum systems

⌧' > C
~

kBT
                S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arXiv:1706.07803
A. Georges and O. Parcollet PRB 59, 5341 (1999)
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A. I. Larkin and Y. N. Ovchinnikov, JETP 28, 6 (1969)

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409 

A bound on quantum chaos:

• In classical chaos, we measure the sensitivity of the position at time t,

q(t), to variations in the initial position, q(0), i.e. we measure

✓
@q(t)

@q(0)

◆2

= ({q(t), p(0)}P.B.)
2

• By analogy, we define ⌧L as the Lyapunov time over which the wave-

function of a quantum system is scrambled by an initial perturbation.

This scrambling can be measured by

⌧���[ ˆA(x, t),

ˆ

B(0, 0)]

���
2
�

⇠ exp

✓
1

⌧L


t� |x|

vB

�◆
,

where vB is the ‘butterfly velocity’. This time ⌧L was argued to obey

lower bound

⌧L � 1

2⇡

~
kBT

.

There is no analogous bound in classical mechanics.

Many-body quantum chaos
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Many-body quantum chaos

• The SYK model, and black holes in

Einstein gravity, saturate the bound

on the Lyapunov time

⌧L =

~
2⇡kBT

S. Shenker and D. Stanford, 1306.0622 
A. Kitaev, unpublished

J. Maldacena and D. Stanford, 1604.07818



Quantum matter without quasiparticles:

• No quasiparticle

decomposition of low-lying states:

E 6=
P

↵ n↵"↵
+

P
↵,� F↵�n↵n� + . . .

• Thermalization and many-body chaos

in the shortest possible time of order

~/(kBT ).



Building a metal
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A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 23, 2017)

Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !
1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from

Ut

8/3/17, 11(25 PMarXiv.org Search

Page 1 of 5https://arxiv.org/find

Cornell University Library
We gratefully acknowledge support from
the Simons Foundation
and member institutions

arXiv.org > search
Search or Article ID

All papers

(Help | Advanced search)

arXiv.org Search Results
Back to Search form  | Next 25 results

The URL for this search is http://arxiv.org:443/find/cond-mat/1/au:+Balents/0/1/0/all/0/1

Showing results 1 through 25 (of 181 total) for au:Balents

1. arXiv:1707.02308 [pdf, ps, other]
Title: Fracton topological phases from strongly coupled spin chains
Authors: Gábor B. Halász, Timothy H. Hsieh, Leon Balents
Comments: 5+1 pages, 4 figures
Subjects: Strongly Correlated Electrons (cond-mat.str-el); Quantum Physics (quant-ph)

2. arXiv:1705.00117 [pdf, other]
Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models
Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents
Comments: 17 pages, 6 figures
Subjects: Strongly Correlated Electrons (cond-mat.str-el)

3. arXiv:1703.08910 [pdf, other]
Title: Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn

Sn/Ge
Authors: Jianpeng Liu, Leon Balents
Subjects: Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Materials Science (cond-mat.mtrl-
sci)

4. arXiv:1611.00646 [pdf, ps, other]
Title: Spin-Orbit Dimers and Non-Collinear Phases in  Cubic Double Perovskites
Authors: Judit Romhányi, Leon Balents, George Jackeli

3

d1
Sachdev-Ye-Kitaev model

A toy exactly soluble model 
of a non-Fermi liquid 

Like a strongly interacting quantum dot 
or atom with complicated Kanamori 

interactions between many “orbitals”

H =
X

i<j,k<l

Uijkl c
†
i c

†
jckcl

|Uijkl|2 =
2U2

N3

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)
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Transport
Generalized 

resistivity
⇢c = 1/� ⇢e = T/

4

which defines the positive real parameters K and D'. At small
momentum, for an isotropic Bravais lattice, �(p) = p2 (with
unit lattice spacing), and the phase action becomes

iS ' = �2K
X

p

Z +1

�1
d!'c,!(i!2 � D'p2!)'q,�!. (9)

The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See [32]). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[33], the action (9)
yields the di↵usive form [34]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads [32]

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in [32], be-
haves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy di↵u-
sion constant D✏ . This identification is seen from the correla-
tor for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
i
2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[35, 36].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: R⇣(T ) ⇠ c⇣ T . We analytically
obtain c' = 2p

⇡
and c" = 16

⇡5/2 [32], implying that the Lorenz
number, characterizing the Wiedemann-Franz law, takes the
unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. Thescaling
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where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

where the temperature coe�cient of resistivity A⇣ =
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large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[35, 36].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: R⇣(T ) ⇠ c⇣ T . We analytically
obtain c' = 2p

⇡
and c" = 16

⇡5/2 [32], implying that the Lorenz
number, characterizing the Wiedemann-Franz law, takes the
unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. The

Linear in T for 
Ec≪T≪U

Fermi liquid 
R=R0+AT2 
for T≪Ec

Crossover from heavy FL to strange metal
•Small coherence scale Ec=t2/U
•Heavy mass !~m*/m ~ U/t
•Small QP weight Z ~ t/U
•Kadowaki-Woods A/!2 = constant
•Linear in T resistivity and T/κ
•Lorenz ratio crosses over from FL to NFL value

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)

, R ⇠ (h/e2)(T/Ec)



Fermi surface coupled to a gauge field 
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Fermi surface coupled to a gauge field 

A. A. Patel and S. Sachdev, PNAS114, 1844 (2017)

f(t) =

1

N
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NX
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Compute out-of-time-order correlator to 
diagnose quantum chaos



Fermi surface coupled to a gauge field 
Compute out-of-time-order correlator to 

diagnose quantum chaos

A. A. Patel and S. Sachdev, PNAS114, 1844 (2017); M. A. Blake, R. A. Davison, and S. Sachdev 1705.07896

Strongly-coupled theory with no quasiparticles and fast scrambling:

⌧L ⇡ ~
2.48 kBT

vB ⇡ 4.1
NT 1/3

e4/3
v5/3F

�1/3

DT =

thermal conductivity

specific heat at fixed density

⇡ 0.42 v2B⌧L

N is the number of fermion flavors, vF is the Fermi velocity, � is

the Fermi surface curvature, e is the gauge coupling constant. More

generally, we find DT ⇠ v2B⌧L in a large number of holographic models



Entangled quantum matter without quasiparticles

• Is there a connection between
strange metals and black holes?
Yes, the SYK model leads to an explicit duality mapping.

• Why do they have the same
local equilibration time ⇠ ~/(kBT )?
Strange metals don’t have
quasiparticles and thermalize rapidly;
General relativity leads to black hole quasi-normal modes,
whose decay time ⇠ ~/(kBTH),
where TH is the Hawking temperature”.

• Theoretical predictions for strange metal
transport in graphene agree well with experiments


