The Contribution of Mergers and Secular Processes to the Evolution of AGNs

David R. Ballantyne
Center for Relativistic Astrophysics,
School of Physics,
Georgia Tech

Thanks to:

- A.R. Draper (Georgia Tech Ph.D., 2012)
- NSF

Results published:

- •Draper, A.R. & Ballantyne, D.R., 2012, ApJ, 751, 72
- •Draper, A.R. & Ballantyne, D.R., 2012, ApJ, 753, L37 (application to ULIRGs)

Merger-triggered AGNs

e.g., Sanders et al. (1988); Hernquist (1989); Kauffman & Haehnelt (2000); Di Matteo et al. (2005); Hopkins et al. (2006)

e.g., Sanders et al. (1988); Hernquist (1989); Kauffman & Haehnelt (2000); Di Matteo et al. (2005); Hopkins et al. (2006)

Secular triggering

• Interactions, stellar bars, nuclear starburst disks.

Unlikely to change the morphology of the galaxy

NGC 1531 & 1532

Ueda et al. (2003)

- The deep surveys over the last decade have measured the Hard X-ray Luminosity Function (HXLF)
- Strong evidence for cosmic downsizing of AGNs
- Are the obscured
 Seyferts at z <~ 1
 fading quasars, or is
 there another fueling
 mechanism
 dominating?

Two Populations of AGNs

- Consider the space density of majormergers of gas rich galaxies.
- Assume each merger creates an AGN

$$dN_{\text{merg}}(z) = \frac{d^2 \Psi}{dN \, dt} \, N_{\text{gal}} \left(M_* > M_*^{\text{min}}(z) \right) f_g(z) \, dt \, \text{Mpc}^{-3}$$

Merger rate/galaxy/Gyr Hopkins et al. (2010) Fraction of gas rich galaxies
Treister et al. (2010)

AGNs can also be triggered by `secular' effects (i.e., minor mergers, cold-flow accretion, starburst winds, etc.)

$$dN_{\text{sec}}(z) = f_{\text{sec}} N_{\text{gal}} \left(M_* > M_*^{\text{min}}(z) \right) f_g(z) dt \text{ Mpc}^{-3}$$

Fractional rate of AGNs triggered per Gyr << 0.3 free parameter

Light-curve for all AGNs:

$$\lambda(t) = \left[1 + (|t|/t_Q)^{1/2}\right]^{-2/\beta}$$

 λ =Eddington ratio $t_Q(\eta,t_0)$, β = free parameters Hopkins & Hernquist (2009)

- Need to evolve an active BHMF
 - Considered 2 measurements of the active BHMF:
 - Netzer (2009) derived from z~0.15 type 1 & 2 AGNs (log-normal)
 - Merloni & Heinz (2008) (Schechter)
 - Considered 2 evolutions:
 - Continuity:

$$\frac{\partial n_M(M_{\bullet},t)}{\partial t} + \frac{\partial [n_M(M_{\bullet},t)\langle \dot{M}(M_{\bullet},t)\rangle]}{\partial M} = 0,$$

- Labita et al. (2009) observationally-derived measurement: Max BH mass ∞ (1+z)^{1.64}
- Use Marconi et al. (2004) BC to get X-ray luminosity.
- Compared to HXLF, XRB, BH mass density and X-ray number counts to constrain models

Draper & Ballantyne (2012)

Black = total HXLF

Red = merger-triggered AGNs (MH08 BHMF; Labita09 BH evolution)

Blue = secular triggered AGN (Netzer09 BHMF; continuity)

Draper & Ballantyne (2012)

- BH mass grown through luminous accretion provided by major mergers (cf. Soltan)
- Integrated accretion light dominated by secularlytriggered AGNs

- Galaxy evolution changes character at z ~ 1.
 - From merger to secular-dominated
 - □ Why?