Black Holes in Globular Clusters

Steinn Sigurðsson Dept. Astro., IGC Penn State

KITP 05 Aug '13

Massive Black Holes: Birth, Growth and Impact Session: Formation and early growth of supermassive and intermediate mass black holes

Probes BH formation at high z
maybe some insight into seeds
M_{halo}-M_{BH} - how low does it go?
really need to understand dynamical evolution of small clumps of BH over 10+ Gyrs...
good bet, a priori, for IMBH hunts

BH formation and kicks

Sect BH formation in GCs ø dynamical evolution retention incl. natal kick of Nova Sco – Brandt et al 1995
 Sevidence for mass independent BH kicks Repetto et al 2012

"Black Hole Interaction" Bintley's E=mc² Birmingham Royal Ballet

K. H-B. Vanderbilt (2008)

Thursday, August 15, 2013

Are there BH in GC?

Ø Yes.

Most may be ejected: Newtonian recoil in 3-body encounters radiation recoil in mergers BH-BH mergers
 BH-NS merger radiation recoil?! Some may persist in globulars. Many? 0

BH survival

Spitzer instability & runaway:

Kulkarni et al '93, Sigurdsson & Hernquist '93

Or not:

Mackey et al '08, Morscher et al '13, Sippel & Hurley '13

o no equipartition? (Trenti & van der Marel 2013)

Mass spectrum; IMBH?

o cf Miller & Hamilton '02

Do we see BH in GC?

 Emission line object in NGC1399 – Irwin et al '10
 see also Clausen et al. 2012 Object in RZ2109 in NGC4472 - Maccarone et al '11 Assorted UXB and IMBH candidates... caveat young clusters vs GCs M22 – Strader et al '12 M62 – Chomiuk et al '13

Figure 1 | VLA radio continuum image of the core of the globular cluster M22. The two bright circled objects are the sources identified as stellar-mass black holes, M22-VLA1 and M22-VLA2. These sources have flux densities of

From Strader et al '12

or maybe they are just z ~ 10 proto AGN...

> ...but what about M62?

implies many more equipartition?!?!

Figure 2 Optical images of M22 and the candidate companion stars to the radio sources. a. Ground-based image that shows the approximate location of

GC dichotomy?

Two evolutionary tracks for BH in GCs? ???
Spitzer instability and collapse for some, but "puffing out" and persistence for others?
What determines which???
Some clusters have 0-1 (or 2) BH ?
some clusters have 10-100 BH ??

FIG. 11.—Core radius vs. age for the clusters in Table 1 (*circles*; r_c from col. 5), and Table 4 (*triangles*). Solid curves are from Fokker-Planck models of clusters with power-law IMFs with the slopes indicated. (The Salpeter IMF has x = 1.35). The dotted curve corresponds to expansion at a constant velocity of 0.02 km s⁻¹.

Structure of LMC clusters vs age from Elson '91

Where is the $H\alpha$?

The advantage of the second secon

Main sequence interaction cross-section ought to be large and long lasting
Why don't we see many H emitters?
Post-main sequence interactions

Theoristing

Dense clusters ought to hit Spitzer or Quinlan-Shapiro instabilities

OPuffy clusters have "problems" with:

BH-NS+WD -> BH-WD +NS (Clausen '13)

Ø Dense clusters BH-NS merge

GW signal! Would be definitive

BH-PSR would be nice... (Clausen et al '13)

No equipartition?

Is naive theory completely misguided? In a equipartition – cf Trenti & van der Marel '13 orole of CDM? In a dense CDM concentration in GCs embedded in large (>> 100 pc) CDM halos with low density core? (cf Mashchenko et al 2005) some GCs definitely dwarf galaxy core clusters @ all??

Conclusion

BH really in GCs
Still no robust sign of IMBHs in GCs
but many tantalising hints
Theorists bemused – situation normal
More simulations data needed