Disks Around Binaries Binaries (& Binary Formation) in Big Disks

"Building Bridges: A Unified Pictures of Stellar and BH Binary", KITP, 3/16/2022

Simulations of Circumbinary Accretion

Artymowicz & Lubow 1996; Günther & Kley 02; MacFadyen & Milosavljević 08; Cuadra et al.09; Hanawa et al. 10; de Val-Borro et al. 11; Roedig et al. 12; Noble et al.12; Shi et al. 12; D'Orazio et al. 13; Pelupessy & Portegies-Zwart 13; Farris et al. 14; Shi & Krolik 15; Lines et al. 15; O'Ozario et al. 16; Ragusa et al. 16, Munoz & Lai 2016; Miranda, Munoz & Lai 2017; Tang et al. 17; Bowen et al.17,19; Munoz, Miranda, Lai 2019; Moody, Shi & Stone 19; Munoz, Lai et al.2020; Duffell et al.20; Tiede et al. 20; Heath & Nixon 20; D'Orazio & Duffell 21; Zrake et al.21; Penzlin et al.22; Siwek et al.22...

Some pioneering works:

Simulations of Circumbinary Accretion

Artymowicz & Lubow 1996; Günther & Kley 02; MacFadyen & Milosavljević 08; Cuadra et al.09; Hanawa et al. 10; de Val-Borro et al. 11; Roedig et al. 12; Noble et al.12; Shi et al. 12; D'Orazio et al. 13; Pelupessy & Portegies-Zwart 13; Farris et al. 14; Shi & Krolik 15; Lines et al. 15; O'Ozario et al. 16; Ragusa et al. 16, Munoz & Lai 2016; Miranda, Munoz & Lai 2017; Tang et al. 17; Bowen et al.17,19; Munoz, Miranda, Lai 2019; Moody, Shi & Stone 19; Munoz, Lai et al.2020; Duffell et al.20; Tiede et al. 20; Heath & Nixon 20; D'Orazio & Duffell 21; Zrake et al.21; Penzlin et al.22; Siwek et al.22...

Many simulations excised the inner "cavity"

Some cover the whole domain: Circumbinary disk → stream → circumsingle disks: Using finite-volume moving mesh codes: DISCO: Farris, Duffell, MacFadyen, Haiman 2014... AREPO: resolve accretion onto individual body to 0.02ab (Munoz & Lai 2016; Munoz, Miranda & Lai 2019; Munoz, Lai et al 2020...) ATHENA++ (Moody, Shi & Stone 2019)

Summary of Key Dynamical Results

- Short-term variabilities
- Long-term variabilities
- Angular momentum transfer and binary evolution

Our works:

- -- Solve viscous hydrodynamic equations in 2D
- -- alpha viscosity, (locally) isothermal sound speed

Disk $H/r \sim 0.1$, $\alpha = 0.05 - 0.1$ (down to 0.01)

Diego Munoz

(Harvard PhD'13->Cornell -> Northwestern) **Ryan Miranda** (Cornell Ph.D.17 \rightarrow IAS \rightarrow industry)

Short-term (~P_b) Accretion Variabilities

For $e_b \lesssim 0.05$: $\dot{M}(=\dot{M}_1 + \dot{M}_2)$ varies at $\sim 5P_b$ (Kepler period at r_{in} ~ 3a_b)

Short-term (~P_b) Accretion Variabilities For $e_b \gtrsim 0.05$: $\dot{M} = \dot{M}_1 + \dot{M}_2$ varies at $\simeq P_b$

Long-Term Variability:

e_b=0 q_b=1

 $\dot{M}_1 \simeq \dot{M}_2$

Long-Term Variability: Symmetry Breaking

e_b=0.5 q_b=1

Switch between $\dot{M}_1\gtrsim 20\dot{M}_2$ and $\dot{M}_2\gtrsim 20\dot{M}_1$ every ~200 P_b

Munoz & Lai 2016

Single AGN with binary BHs?

Apsidal precession of eccentric disk around the binary

$$\begin{split} \dot{\omega}_{\rm d} &\simeq \frac{3\Omega_{\rm b}}{4} \frac{q_{\rm b}}{(1+q_{\rm b})^2} \bigg(1 + \frac{3}{2} e_{\rm b}^2 \bigg) \bigg(\frac{a_{\rm b}}{R} \bigg)^{7/2} \\ &\sim 0.006 \; \Omega_{\rm b} \bigg(\frac{3a_{\rm b}}{R} \bigg)^{7/2}, \end{split}$$

Precession period 200-300 P_b

Theory of eccentric disks around binary: see Miranda, Munoz & Lai 2017 Munoz & Lithwick (2020) Wang HY, Bai, Lai (2022)

Angular Momentum Transfer to Binary and Long-term Orbital Evolution

Many claims of orbital decays (1980s-2017): Suppressed accretion onto binary (?), binary loses AM through outer Lindblad torque ...

First indication of orbital expansion: Miranda, Munoz & Lai 2017 (using PLUTO, excised cavity)

But see Matthew Bate's talk (in star formation) context on Monday

 $\dot{M}(r,t), \dot{M}_1, \dot{M}_2$ are highly variable Quasi-Steady State: $\langle \dot{M}(r,t) \rangle = \langle \dot{M}_1 \rangle + \langle \dot{M}_2 \rangle = \dot{M}_0$

Angular Momentum Current (Transfer Rate) in CBD

$$\begin{split} \dot{J}(r,t) &= \dot{J}_{adv} - \dot{J}_{visc} - T_{grav}^{>r} \\ \dot{J}_{adv} &= -\oint r^2 \Sigma u_r u_\phi d\phi \\ \dot{J}_{visc} &= -\oint r^3 \nu \Sigma \left[\frac{\partial}{\partial r} \left(\frac{u_\phi}{r} \right) + \frac{1}{r^2} \frac{\partial u_r}{\partial \phi} \right] d\phi \\ T_{grav}^{>r} &= \int_r^{r_{out}} \frac{dT_{grav}}{dr} dr, \quad \frac{dT_{grav}}{dr} = -\oint r \Sigma \frac{\partial \Phi}{\partial \phi} d\phi \end{split}$$

Miranda, Munoz & Lai (2017) found:

$$\langle \dot{J} \rangle = \text{const} \simeq (0.7 a_{\rm B}^2 \Omega_{\rm B}) \langle \dot{M} \rangle$$

Direct computation of torque on the binary

Gravitational torque from all gas + Accretion torque

$$\dot{J}_b = (\dot{L}_b)_{\text{grav}} + (\dot{L}_b)_{\text{acc}} + (\dot{S}_1)_{\text{acc}} + (\dot{S}_2)_{\text{acc}}$$

NOTE: Use "passive binary" with prescribed motion; no "Newton's 3rd law" problem. NOTE: I now think we should have added torque from pressure (see Rixin Li & Lai 2022 for method)

Direct computation of torque on the binary

$$l_0 \equiv rac{\langle \dot{J}_b
angle}{\langle \dot{M}_b
angle} = 0.68 a_b^2 \Omega_b$$
 e_b=0

Angular momentum transfer to the binary per unit accreted mass

Recap: Although the accretion flow is highly dynamical, the system reaches quasi-steady state:

$$\langle \dot{M}(r,t) \rangle = \langle \dot{M}_1 \rangle + \langle \dot{M}_2 \rangle = \dot{M}_0$$

 $\langle \dot{J}_b \rangle \simeq \langle \dot{J}_{\text{disk}}(r,t) \rangle = \text{const}$

Angular momentum transferred to the binary per unit accreted mass:

$$l_0 \equiv \frac{\langle \dot{J}_b \rangle}{\langle \dot{M}_b \rangle} = 0.68 a_b^2 \Omega_b$$

Munoz, Miranda & DL 2019

Confirmed by Moody, Shi & Stone 2019 (ATHENA++) Duffell et al. (2020),

Implication of $\dot{J}_B > 0$:

For
$$q = 1$$
, $e_B = 0$ binary:
 $\dot{J}_B = \dot{M}_B l_0$ $l_0 \simeq 0.68 \, l_B$ where $l_B = a_B^2 \Omega_B$
 $\Rightarrow \frac{\dot{a}_B}{a_B} = 8 \left(\frac{l_0}{l_B} - \frac{3}{8} \right) \frac{\dot{M}_B}{M_B}$

Binaries can expand due to circumbinary accretion !

For e_B=0:
$$\frac{\dot{a}_B}{a_B} \simeq 2.68 \frac{M_B}{M_B}$$

Munoz, Miranda & Lai 2019

Eccentric Binaries

.

To obtain \dot{a}_b and \dot{e}_b , we need \dot{J}_b and \dot{E}_b

$$\mathcal{E}_{b} \equiv \frac{1}{2}\dot{\mathbf{r}}_{b}^{2} - \frac{GM_{b}}{r_{b}} \qquad \text{where } \mathbf{r}_{b} = \mathbf{r}_{1} - \mathbf{r}_{2}, \ M_{b} = M_{1} + M_{2}$$

$$\implies \frac{d\mathcal{E}_{b}}{dt} = -\frac{G\dot{M}_{b}}{r_{b}} + \dot{\mathbf{r}}_{b} \cdot (\mathbf{f}_{1} - \mathbf{f}_{2})$$

$$\mathbf{f}_{1} = (\text{force/mass on } M_{1}) = \mathbf{f}_{1,\text{gravity}} + \mathbf{f}_{2,\text{accretion}}$$

Munoz et al. 2019

e_b	$\dot{J}_b \left[\dot{M}_b a_b^2 \Omega_b \right]$	$\dot{a}_b/a_b \left[\dot{M}_b/M_b \right]$	$\dot{e}_b \left[\dot{M}_b / M_b \right]$
0	0.68	2.2	0.0
0.1	0.43	0.75	2.4
0.5	0.78	0.95	-0.20
0.6	0.81	0.47	-2.34

Eccentric Binaries

See also D'Orazio & Duffell 2021

Unequal-mass binaries $q = M_2/M_1 < 1$

 $q=M_2/M_1<1$ $e_b=0~$ Munoz, Lai, Kratter, Miranda 2020 See also Duffell+2020

$$q=M_2/M_1<1$$
 $e_b=0~$ Munoz, Lai, Kratter, Miranda 2020

-- Low-mass component accretes more

See also Bate+2000; Farris+2014

$$\begin{array}{l} q = M_2/M_1 < 1 \\ e_b = 0 \quad \mbox{Munoz, DL +2020} \end{array}$$

-- Dominant variability frequency

$$q = M_2/M_1 < 1$$

$$e_b = 0 \qquad \text{Munoz, DL +2020}$$

-- Angular momentum transfer

-- Orbit evolution

See also Duffell et al. 2020: $\dot{a}_b < 0 \, \, {
m for} \, \, q_b \lesssim 0.05$

Unequal-mass, eccentric binaries:

see M.Siwek, Weinberger, Munoz, Hernquist, arXiv:2203.02514

Recap:

In quasi-steady state, comparable-mass binary can expand while accreting from CBD

Is binary decay possible ?

e.g. Supermassive BH Binaries, final pc problem e.g. Formation of close (AU) stellar binaries?

Is binary decay possible ?

e.g. Supermassive BH Binaries, final pc problem e.g. Formation of close (AU) stellar binaries?

Yes/maybe...

- e.g. Thin (low-viscosity) disks"steady-state"? finite torus = mass-fed disk? Pressure?e.g. Large (locally) massive disk:
 - $\Sigma\pi a_b^2\gtrsim M_2$
- e.g. Gas could get ejected in outflow (?)...

Chris Tiede's talk on Tuesday See Penzlin, Kley et al. 2022

Likely what is happening for young star binaries (Maxwell Moe)

Caveats of 2D viscous hydro simulations:

Equation of state/cooling (Haiyang Wang, Bai, Lai 2022 in prep) B fields, turbulence.....

So far: Co-planar disks

What about misaligned disks ?

See Steve Lubow's talk (next)

Observations:

An example of Misaligned circumbinary disk

IRS 43 ALMA a_b ~ 74 au, three disks

Brinch et al. 2016

Torque from binary on disk => disk (ring) nodal precession

$$\Omega_p(r) \simeq \frac{3\mu}{4M_t} \left(\frac{a}{r}\right)^2 \Omega(r)$$

Differential precession + internal fluid stress ==> warped/twisted disk

Warp + Viscosity \rightarrow Dissipation \rightarrow Align L_b and L_d

$$\frac{\partial \hat{\mathbf{l}}}{\partial \ln r} \sim \frac{\alpha}{c_{\rm s}^2} \mathbf{T}_{\rm ext} \qquad |\mathbf{T}_{\rm ext}| \sim r^2 \Omega \,\omega_{\rm ext}, \quad \omega_{\rm ext} = \Omega_{\rm prec}$$
$$\left| \frac{\mathrm{d} \hat{\mathbf{l}}}{\mathrm{d} t} \right|_{\rm visc} \sim \left\langle \left(\frac{\alpha}{c_{\rm s}^2} \right) \frac{\mathbf{T}_{\rm ext}^2}{r^2 \Omega} \right\rangle \sim \left\langle \frac{\alpha}{c_{\rm s}^2} (r^2 \Omega) \omega_{\rm ext}^2 \right\rangle$$

Typical alignment time can be short (~ precession period) Foucart & DL 2014 Zanazzi & DL 2018

Surprise: Disk around eccentric binary may evolve toward polar alignment

Martin & Lubow (2017): viscous hydro simulation using SPH

Initial disk-binary inclination $I(0) = 60^{\circ}$ Binary eccentricity $e_{\rm b} = 0.5$.

Theoretical Calculation of Polar Alignment of Disks Around Eccentric Binaries

Zanazzi & Lai 2018

J.J. Zanazzi (Cornell Ph.D.18 →CITA→Berkeley)

Test particle around eccentric binary has two "masters"

$$\Lambda = (1 - e_{\rm b}^2)(\hat{\boldsymbol{l}} \cdot \hat{\boldsymbol{l}}_{\rm b})^2 - 5(\hat{\boldsymbol{l}} \cdot \boldsymbol{e}_{\rm b})^2$$

For \hat{l} to precess around \hat{e}_b , require $\sin I > \sin I_{\rm crib}$

$$I_{\rm crit} = \cos^{-1} \sqrt{\frac{5e_{\rm b}^2}{1 + 4e_{\rm b}^2}}$$

Zanazzi & DL 2018

Warped viscous disk around eccentric binary

Evolve towards either align (anti-align) or polar align with the binary

Zanazzi & DL 2018

nature Astronomy

Corrected: Publisher Correction

A circumbinary protoplanetary disk in a polar configuration

Grant M. Kennedy ^{1,2*}, Luca Matrà³, Stefano Facchini ^{4,5}, Julien Milli⁶, Olja Panić⁷, Daniel Price ^{8,9}, David J. Wilner ³, Mark C. Wyatt¹⁰ and Ben M. Yelverton¹⁰

CrossMark

The Degree of Alignment between Circumbinary Disks and Their Binary Hosts

Ian Czekala^{1,8}^(b), Eugene Chiang^{1,2}^(b), Sean M. Andrews³^(b), Eric L. N. Jensen⁴^(b), Guillermo Torres³^(b), David J. Wilner³^(b), Keivan G. Stassun^{5,6}^(b), and Bruce Macintosh⁷^(b)

Ian Czekala Disucssion Session this afternoon

Binary in a big disk

Binary BH mergers in AGN disks ?

McKernan+12, Bellovary+16, Bartos+17, Stone+17, McKernan+18, Secunda+18, Yang+19, Tagawa+20, etc

See Saavik Ford's talk on Tuesday

Is it like "Circumbinary Accretion"?

Not clear in general What is Mdot? How does binary evolve?

Picture from Li & Cheng (2019)

Simulations of binary in disk

Baruteau, Cuadra & Lin 2011

Global disk (FARGO): $q = 10^{-3}$ $a_{\rm b} = 0.04r_0$

→ Orbital decay

Simulations of binary in disk

Y.Li... Hui Li... (LANL) 2021

Orbit expands (if gravitational softening is small enough) Orbit decays if inner disk is heated (Li ...Hui Li.. 2021b)

> See Dempsey's talk Hui Li discussion session

Local simulations of binary in disk

R.Li & Lai, arXiv:2022.07633 Ri.Li & Lai, in prep

Dr. Rixin Li (Cornell)

Local shearing box

(not "local wind tunnel box" used by Kaaz et al. 2021)

ATHENA Mesh refinement Resolution: a_b~250 cells zero softening in gravity

Σg $\Omega_{\rm K}$ $V_{\rm w}$ M $\hat{\emptyset} \Rightarrow \hat{y}$ r_0 m_1 $a_{\rm b}$ $\hat{R} \Rightarrow \hat{x}$ m_2 $m_{\rm b} = m_1 + m_2, v_{\rm b} = \Omega_{\rm b} a_{\rm b}$ Length scales of the problem:

$$a_b, \quad R_{\rm B} \sim \frac{Gm_b}{c_\infty^2}, \quad R_{\rm H} \sim r_0 \left(\frac{m_b}{M}\right)^{1/3}, \quad H$$

Velocity scales of the problem:

 $v_b, c_{\infty}, V_{\text{shear}}$

→ Dimensionless ratios:

$$\frac{q}{h^3}, \quad \frac{R_{\rm H}}{a_b} \equiv \lambda$$

where $q = m_b/M$, $h = H/r_0$

 m_2/m_1 , e_b , EOS (e.g. γ law)

Example of flow structure

Pairs of bow shocks, spiral shocks

BH = absorbing sphere: sink radius: $r_{sink} = 0.04 a_b \simeq 10$ cells $\rightarrow m_b$

Force on each BH: from gravity + accretion + pressure

ightarrow Torque on binary, energy transfer rate ightarrow $a_b, \ e_b$

Some "Typical" Results:

 $\langle \dot{m}_b \rangle$: can be << Bondi-Hoyle-Lyttleton rate (even including shear) depends on sink radius (for non-viscous flow)

$$\ell_{0} = \frac{\langle \dot{L}_{b} \rangle}{\langle \dot{m}_{b} \rangle} = -0.23 v_{b} a_{b} \qquad m_{2}/m_{1} = 1, \ e_{b} = 0$$
$$q/h^{3} \sim 1, \ \lambda = 5, \ \gamma = 5/3$$
$$\frac{\langle \dot{a}_{b} \rangle}{a_{b}} = -4.81 \frac{\langle \dot{m}_{b} \rangle}{m_{b}}$$

Eccentric, equal-mass binaries

Circular, unequal-mass binaries

Summary II: Hydrodynamics of Binary Embedded in a Disk

Many issues remain to be explored/understood

2D vs 3D Local vs global EOS, viscosity (→ magnetic field, turbulence)

Formation of Merging BH Binary in AGN Disk

Where do BH binaries in AGN disks come from?

Tagawa, Haiman, Kocsis 2020 See also Bartos+17; Stone+17; Secunda+18;....

- 1. Binaries form in disks via GI (~pc)
- 2. Binaries in nuclear clusters get captured in disks
- 3. Single BHs in AGN disks get captured in binaries

Long-Term Evolution of Tightly-Packed Stellar BHs in AGN Disks: Formation of Merging BH Binaries via Close Encounters

Jiaru Li, Dong Lai, Laetitia Rodet

arXiv:2203.05584

Jiaru Li (Cornell Ph.D. 2023)

The Problem:

Two BHs (m_1, m_2) on closely-packed, nearly circular, nearly-coplanar orbits around a SMBH (M) (e.g. brought together by migration in AGN disks)

When
$$a_2 - a_1 \lesssim 2\sqrt{3} R_{
m H}$$

 $R_{
m H} = a_1 \left(rac{m_{12}}{3M}
ight)^{1/3}, \quad m_{12} = m_1 + m_2$

orbits are dynamically unstable.

What happens to the two BHs?

Neglect gas effect for now...

Two planets in unstable orbits around a star:

Two outcomes:

- 1. Ejection of lower-mass planet
- 2. Planet-planet collision

See Li, Lai, Anderson & Pu 2021 and refs therein

Two BHs in unstable orbits around a SMBH:

Since $M/m_{12} \sim 10^6 \gg 1$ ejection is not possible (takes many orbits > Hubble time)

→ The two BHs undergo "chaotic" motion, experience recurring closer encounters (separation < R_H)

Close encounters with $r_{
m rel} < R_{
m H}$

Close encounters with $r_{ m rel} < 0.1 R_{ m H}$

During close encounters, the BH pairs are temporarily bound with $a_{
m rel} \sim R_{
m H}$

But they are all short-lived (destroyed by tide from SMBH in ~ one orbit)

For VERY close encounter:

Capture radius for forming "permanent" binary due to GW bremsstrahlung

What is the cumulative capture rate (i.e. CE4 rate)?

Close encounters with $r_{
m rel} < R_{
m H}$

Close encounters with $r_{ m rel} < 0.1 R_{ m H}$

For a typical "SMBH + 2 BHs" system (in unstable orbits), what is the cumulative capture rate to form real bound binary?

$$l_{\rm rel} \simeq \sqrt{2m_{12}r_{\rm rel}}$$

$$\frac{\mathrm{d}P}{\mathrm{d}l_{\rm rel}} \propto l_{\rm rel} \quad \Rightarrow \qquad P(\langle r_{\rm rel}) \propto r_{\rm rel}$$

$$\longrightarrow \langle N_{\rm cap}(t) \rangle \simeq 6 \times 10^{-5} \left(\frac{t}{P_1}\right)^{0.52} \left(\frac{r_{\rm cap}}{10^{-4}R_{\rm H}}\right)$$

It takes $10^8 P_1$ (on average) for two BHs to capture into bound merging binary

Captured BH binary as GW source

$$f_{\rm cap} \simeq (1.4\,{\rm Hz}) \left(\frac{4\mu}{m_{12}}\right)^{-3/7} \left(\frac{M}{10^8 M_{\odot}}\right)^{-2/7} \left(\frac{m_{12}}{100 M_{\odot}}\right)^{-5/7} \left(\frac{a_1}{100 M}\right)^{-3/7}$$

Once capture, it will take a few orbits to merge it enters LIGO band with $\,e\gtrsim 0.5$

Tentative: Rate $\sim 1 \,\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ assuming each AGN has one BH pair trapped at 100M

What about the gas effect?

In N-body simulations, add

Gas does not increase the capture rate

Summary

Circumbinary Accretion:

- -- short-term variabilities: ~ 5 P_b (for e_b ~0) vs P_b (finite e_{b_c} or q<0.4)
- -- Small-mass accretes more; symmetry breaking in accretion (q=1, finite e_b)
- -- Binary can gain angular momentum and can expand (q>0.1); but thin disks?
- -- Eccentricity attractor e_b~0.4

Hydrodynamics of binary in a big (AGN) disk:

- -- Scaling parameters for simulations
- -- Accretion can be strongly suppressed compared to Bondi
- -- Orbital evolution (decay) always accompanied by accretion

Merging BH binary from closer encounters in AGN disks:

-- GW bremsstrahlung capture, very eccentric merger