DYNAMICS OF ALIGNED AND MISALIGNED CIRCUMBINARY DISKS

Steve Lubow STScl March 16, 2022

Collaborators: Rebecca Martin, Jeremy Smallwood, Cheng Chen, Alessia Franchini, Chris Nixon, Zhaohuan Zhu, Ian Rabago

• 3 Disks

- circumsecondary (CSD)
- circumprimary (CPD)
- circumbinary (CBD)

BINARY DISKS

Interested in SMBH binaries and young stellar binaries

Guilloteau et al. (1999)

Dutrey et al. 2016

SINGLE STAR FORMATION

Shu, Adams, Lizano 1987

Single rotation direction

BINARY/PLANET/CB DISK ALIGNMENT OBSERVATIONS

• CB disk alignments for P < 30d ; Correlated with binary eccentricity

3 MISALIGNED DISKS IRS 43

Also SMBH case

- Simulations/Model Limitations
- Coplanar case
- What is different for misaligned dynamics?
 - Gap Opening

 - Polar CBDs

OUTLINE

- Kozai-Lidov Disks (CSD; CBD in triple)

SIMULATION LIMITATIONS • Want models for CBDs around SMBH and young star binaries

- Simulations often assume:
 - alpha model, $0.001 < \alpha < 0.1$, sometimes MRI -0.03 < H/r < 0.1
- SMBH and young star binaries fall outside these expected actual parameter ranges:
 - -SMBH: 0.001 < H/r < 0.01, $\alpha > 0.01$ for fully ioinzed MRI, also radiation effects
 - -Young binaries: 0.02 < H/r < 0.1, α highly uncertain: may be very small $\alpha < 0.0001$, could be dead zones, complex nonideal MHD, winds
- Analytic models can help extend these ranges.
- Models typically assume coplanarity

COPLANAR PROGRADE FLOW

- Gap opening by tidal field of binary (Artymowicz & Lubow 1994; Miranda & Lai 2015, Lubow et al. 2015)
- Gas streams in the gap (Artymowicz & Lubow 1996, Gunther & Kley 2002, MacFadyen & Milosavljevic' 2008, Shi et al. 2012, D'Orazio et al. 2013, Farris et al. 2014, 2015, Munoz et al. 2016, 2019, 2020 Duffell et al. 2020, Moesta et al. 2019, Heath & Nixon 2020, D'Orazio & Duffell 2021, Tiede et al. 2021, Dittman & Ryan 2022)
- Gas streams typically cause pulsed accretion onto mini-disks through gap
- CBD can become eccentric, even if binary orbit is circular
- Important coplanar prograde issues remain on how binary orbit evolves, gas stream properties, etc.

GAP OPENING IN RETROGRADE DISKS

- Gaps get smaller in tilted disks because tidal resonances are weaker: binary farther away from disk and disk moves faster relative to binary (Miranda and Lai 2015; Lubow et al. 2015)
- No tidal (Lindblad) resonances for retrograde disks with $e_b = 0$, get small gap (Nixon et al. 2011)
- Binary orbit efficiently loses angular momentum and can become eccentric (Nixon et al. 2011, Schnittman & Krolik 2015)
- For $e_b = 0$, $i \sim \pi$, get $T_{2,2} \propto (i \pi)^8$ for near retrograde disk (Lubow et al. 2015)
- Weak resonances for eccentric orbit binary with retrograde disk $T_{-1,2} \propto e_h^6$; retrograde bars at high e_b (Nixon & Lubow 2015)

Nixon & Lubow 2015

POLAR DISKTORQUE AT $e_h \simeq 1$

- At high e_h coplanar disk sees highly nonaxisymmetric potential, strong torque.
- At high e_b polar disk $i = 90^\circ$ sees nearly axisymmetric potential, small torque
- Applies to observations of polar disk HD98800 $e_h = 0.785$ (Kennedy et al. 2019)

Right ascension (J2000)

GAP OPENING IN POLAR DISKS

- Polar disk Lindblad torque, for $e_b \sim 1$, $T \propto (1 - e_b)^k$, k > 1 (done w/o using series expansion in e_h Lubow & Martin 2018)
- Gaps smaller for polar disks at high e_h
- Consistent with observations of polar disk HD98800 $e_{b} \simeq 0.8$
- Type of flow in polar gap? No hint yet of gas streams (Smallwood et al. in preparation).

Franchini, Lubow, & Martin 2018

NODAL PRECESSION • Tilted disks in binary systems undergo nodal precession, gyroscopic motion

- Disk behaves like a solid body (little warping) if differential precession timescale is longer than radial sound crossing timescale (Papaloizou & Terquem 1995; Larwood & Papaloizou 1997)
- Otherwise get strong warps and possibly breaking
- Evolution to coplanarity for circular orbit binaries, typically (Papaloizou & Terquem 1995, Lubow & Ogilvie 2000, Lodato & Facchini 2013, Foucart & Lai 2014, Martin, Zhu, & Armitage 2020)
- Is there something qualitatively new/different for misaligned disks?

Differential precession of particles

- AI-LIExternal companion interacts with disk
- Initially circular particle orbit around central object - Tilt oscillations for $i_0 > 39^\circ$ - For $i_0 = 60^\circ$ gain eccentricity to $e_{max} = 0.76$ at lowest inclination $i_{min} = 39^{\circ}$
- KL CSDs (Martin et al. 2014, Zanazzi & Lai 2017, Lubow & Ogilvie 2017) - Need some pressure, but not too much - enough pressure to prevent disk breaking - not too much: need $\omega_{gr} > \omega_{pr}$ (apsidal precession rates)
 - KL disks experience eccentricity, dissipation, and shocks
 - Tilt damps to lower value
- KL CBDs also possible in triple systems (Martin et al. 2022)

DISKS

SUSTAINED KOZAI-LIDOV (KL) OSCILLATIONS

- Inclined CBD continuously feeds gas to CSDs via inclined gas streams
- Resulting CSDs are also inclined
- CSDs undergo sustained KL oscillations and time varying accretion
- Dust rings in KL disks (Martin & Lubow 2022)

Smallwood, Martin, & Lubow 2021

KOZAI-LIDOV DISKS

- Linear theory when e is small (Zanazzi & Lai 2017, Lubow & Ogilvie 2017)
- Upper limit of H/r ~ 0.15 for typical KL disks
- Multiple unstable modes are present. Fastest growing mode most important.
- Minimum inclination angle for instability can be quite low, well below particle angle of 39 degrees. Resonance where apsidal and nodal precession rates match.
- But growth rate is generally low below 39 degrees., below mode 1.

PARTICLE ORBITS AROUND ECCENTRIC BINARIES

Farrago & Laskar (2010) Eccentric orbit binary: secular triaxial potential

tilt oscillations

Nearly polar: e_b nearly along J_p

 $i \simeq 90^\circ, \Omega \simeq 90^\circ$

Binary angular momentum

HIGH INCLINATION PARTICLE ORBITS

Circular Binary

Disks become coplanar

Eccentric Binary

Disks can become polar

TILT EVOLUTION PROCESS

- Viscous damping changes tilt
- Pressure induced bending waves

Evolution to polar more likely at high e_b : For $e_b = 0.5$, need $i_0 > 40^\circ$; for $e_b = 0.8$, only need $i_0 > 20^\circ$

Apply to nearly polar disk: Zanazzi & Lai 2018, Lubow & Martin 2018 Shows evolution to polar orientation at rate close to simulations

BINARY/PLANET/CB DISK ALIGNMENT OBSERVATIONS

• CB disk alignments for P < 30d ; Correlated with binary eccentricity

DISKS AROUND SPHEROIDAL POTENTIALS

Dobrovolskis, Borderies, & Steiman-Cameron (1989)

Both evolve to horizontal alignment

Coplanar alignment is at an energy minimum for tilts at constant radius. Polar alignment is at an energy *maximum* for tilts at constant radius: energy is conserved by radial infall (accretion)

- Misaligned CBDs in triple systems: both evolution to polar and/or KL oscillations
- Outcome depends on dominant torque: inner binary (polar) vrs outer star (KL)
- Can result in eccentric polar disks
- CBD in triple HD98800 dominated by central binary and evolves to polar

TRIPLE SYSTEMS

Martin et al. 2022

CONCLUSIONS

- Inclined/retrograde disks in binaries differ from coplanar prograde case
 - close retrograde encounters with binary, efficient binary angular momentum loss
 - KL oscillations: highly eccentric disks
 - Polar CBD alignment: favored at higher e_b
- No observational evidence yet of KL disks
- Polar orientations of gas disk HD98800 and debris disk 99 Her can be explained by evolution from an initially modestly misaligned CBD
- Expect correlation between e_b and i. Implications for misaligned CB planets

Smallwood et al. 2021

Kennedy et al. 2019