Binary Star Populations

1. Evolved Binaries:
A) POSYDON population synthesis (Meng Sun)

B) Blue stragglers in triples (Nathan Leigh)

C) HW Vir: post-CE binaries

2. Young Binaries

A) Large-scale simulations (Rajika Kuruwita)

B) a inferred from close solar-type binaries

C) a inferred from close massive binaries
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POSYDON: A New Population Synthesis Code
r G_)' N with Detailed Binary-Evolution Simulations
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Other Ways to Merge Compact Objects
via the Three-Body Problem???

Portegies Zwart & Leigh (2019), ApJL, 876, 33

Figure 1. Cartoon depiction of our proposed scenario for
the formation of Binary 7782, specifically mass transfer from
an evolved outer tertiary companion on to a compact inner
binary via a circumbinary disk. The outer tertiary compo-
nent has mass ms, whereas the inner binary components have
masses m; and mz. The inner and outer orbital separations
are denoted by, respectively, ai, and aocut. The circulariza-
tion radius of the accretion stream is denoted a., as calcu-
lated via Equation 2, and marks the mean separation of the
circumbinary disk.

NGC188 orbital eccentricity/log period (e—log P) distributions.
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What does the tertiary MT mechanism predict for the
mergers of compact object binaries?

(see Leigh, Toonen, Portegies Zwart & Perna (2020), MNRAS, 496, 1819 for more details!)

Specific predictions for the masses of the companions?

- Hypervelocity white dwarfs near the Chandrasekhar mass limit?
- Constraints on the maximum neutron star mass? Production of hypervelocity millisecond pulsars?

What about the physics of mass transfer?

- When is steady-state disk accretion achieved?

- Do we really believe the tendency to accrete toward a mass ratio of unity?
- When is a merger initiated?

- When is triple disruption initiated (i.e., by widening the inner orbit)?

Would this mechanism predict anything observable?

- It does seem to make strong predictions for the properties of the outer tertiary object and orbit.
- Faster rotation rates than expected for other mechanisms? Slower?
- Higher/lower magnetic fields? Is this observable (e.g., Halpha?)



Post Common Envelope Eclipsing Binaries
HW Vir: sdB + dM

TIC 322390461 (BMAM-V432)
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What do large populations of HW Vir EBs tell us about CE evolution?

Can we use them to benchmark simulations of circumbinary gas/disk-aided migration?



Binary Star Formation



Investigating formation

pathways of multiple star

systems in simulations of GMC

with varying gas masses

* Right: shows the
separations of all systems
formed and markers colour
code formation pathway.

Rajika Kuruwita, INTERACTIONS Fellow ; vt rs1ry oF

KITP binary 22 COPENHAGEN .
Funded by European Union
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Kuruwita & Haugbglle 2022, in prep




* More systems form via

core fragmentation in 1'0
lower mass GMCs, 0l
probably due to a

higher degree of c 06F
clustering (measured &
with TPCFs). ll

 With higher mass
GMCs, dynamical

cd pture 15 marglna”y 0.0 1500 3000 3750 4500 6000 12000
dominant Initial Gas Mass (M)

Rajika Kuruwita, KITP binary 22 Kuruwita & Haugbglle 2022, in prep

0.2 IEEl Core fragmentation
B Delayed core fragmentation
Bl Dynamical capture




Trying to determine whether the
core fragmentation scale varies
with star forming environment

It seems to shift around a little,
but broadly peaks around a few

thousand au

Also in to determine if there is
any significant orbital evolution

between the formation
pathways.

Rajika Kuruwita, KITP binary 22
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Close binaries (a < 10 AU) cannot form in situ (Boss 1986; Bate 1998, 2001),
yet observed close binary fraction of Class Il/11l T Tauri stars (~3 Myr)
matches field MS distribution (Mathieu 1994; Kounkel et al. 2019)
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Close solar-type binaries originally migrated from
a>50AUtoa=0.1-10AU
during embedded Class 0/I protostellar phase within t <2 Myr



Excess fraction of twin binaries
with g > 0.95 decreases from
30% near 0.1 AU to
2% near 1,000 AU
(Tokovinin 2000;

Moe & Di Stefano 2017;
El-Badry et al. 2019).

Evidence that protobinaries
migrated inward as there was
preferential accretion onto the

secondary, driving q toward unity.
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Toy Model of Disk Fragmentation, Accretion, & Migration
(Tokovinin & Moe 2020)

Simulated Period Distributions:

Solar-type Binaries - Massive Binaries -
skewed toward long perlods skewed toward short periods
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Close Massive Binaries
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Measured close binary fraction of Herbig Ae/Be pre-MS stars
is smaller than their A/B MS counterparts
(Corporon & Lagrange 1999; Apai et al. 2007; Sana et al. 2017; Ramirez-Tannus et al. 2021)



Close Massive Binaries

In M17 (Swan Nebula; t = 1 Myr),
there are =60 early-B stars.

Only 11 are YSOs / Herbig Be stars
with signs of active disk accretion.

None of these 11 have
close companions (Sana et al. 2017).

But O/early-B stars in slightly
older clusters (t = 3 Myr)
have large close binary fraction.

Interpretation #1: Close companions to OB stars
migrate inward between t = 1 Myr and 3 Myr
after most of the gas/disk has dissipated.

No theoretical explanation yet —any ideas?!?!

Interpretation #2: Selection Effect —
subset of OB stars with disks
are biased against close binaries
because close binaries shorten disk
lifetimes (similar to T Tauri sample).

60 80 100 [RENEEEEEETE

40

LA B L B B N

Disk Frequency (%)

20

0

| 2/8

Single Stars (47/59)

7/16

4/11
Close Binaries

Wide Binaries

(*2)]
N
~
I BT BT |

1 lllllll 1 1 lllllll 1 1 11 1

10 100 Kraus+16
Binary Separation (AU)



